Device scale-up and long-term stability constitute two major hurdles that the emerging perovskite solar technology will have to overcome before commercialization. Here, a comparative study was performed between ZnO and TiO2 electron-selective layers, two materials that allow the low-temperature processing of perovskite solar cells on polymer substrates. Although the use of TiO2 is well established on glass substrates, ZnO was chosen because it can be readily printed at low temperature and offers the potential for the large-scale roll-to-roll manufacturing of flexible photovoltaics at a low cost.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2014
Thin-film photovoltaics based on alkylammonium lead iodide perovskite light absorbers have recently emerged as a promising low-cost solar energy harvesting technology. To date, the perovskite layer in these efficient solar cells has generally been fabricated by either vapor deposition or a two-step sequential deposition process. We report that flat, uniform thin films of this material can be deposited by a one-step, solvent-induced, fast crystallization method involving spin-coating of a DMF solution of CH3NH3PbI3 followed immediately by exposure to chlorobenzene to induce crystallization.
View Article and Find Full Text PDF