Biomed Pharmacother
September 2022
The prevalence of obesity, diabetes, non-alcoholic fatty liver disease, and related metabolic disorders has been steadily increasing in the past few decades. Apart from the establishment of caloric restrictions in combination with improved physical activity, there are no effective pharmacological treatments for most metabolic disorders. Many scientific-studies have described various beneficial effects of probiotics in regulating metabolism but others questioned their effectiveness and safety.
View Article and Find Full Text PDFBackground: Fetuin-A, also known as α2-Heremans-Schmid glycoprotein (AHSG), is an abundant plasmatic serum protein synthesized predominantly in liver and adipose tissue. This glycoprotein is known to negatively regulate insulin signaling through the inhibition of insulin receptor (IR) autophosphorylation and tyrosine kinase activity, which participates in insulin resistance (IR) and metabolic syndrome development. Recent studies demonstrated that IR and associated metabolic disorders, are closely related to the gut microbiota and modulating it by probiotics could be effective in metabolic diseases management.
View Article and Find Full Text PDFObesity, lipodystrophy, diabetes, and hypertension collectively constitute the main features of Metabolic Syndrome (MetS), together with insulin resistance (IR), which is considered as a defining element. MetS generally leads to the development of cardiovascular disease (CVD), which is a determinant cause of mortality and morbidity in humans and animals. Therefore, it is essential to implement and put in place adequate management strategies for the treatment of this disease.
View Article and Find Full Text PDFFifty-two slow-growing strains were isolated from root nodules of Calicotome spinosa grown in the Northeast of Algeria and grouped in 24 rep-PCR clusters. One representative strain for each profile was further phylogenetically characterized. The nearly complete 16S rRNA gene sequence indicated that all strains were affiliated to Bradyrhizobium.
View Article and Find Full Text PDFWe have characterized genetic, phenotypic and symbiotic properties of bacterial strains previously isolated from nitrogen-fixing nodules of Retama sphaerocarpa from Northern Algeria. Phylogenetic analyses of 16S rRNA genes and three concatenated housekeeping genes, recA, atpD and glnII, placed them in a new divergent group that is proposed to form a new Bradyrhizobium species, Bradyrhizobium algeriense sp. nov.
View Article and Find Full Text PDFLupinus micranthus is a lupine distributed in the Mediterranean basin whose nitrogen fixing symbiosis has not been described in detail. In this study, 101 slow-growing nodule isolates were obtained from L. micranthus thriving in soils on both sides of the Western Mediterranean.
View Article and Find Full Text PDFFifty-one rhizobial strains isolated from root nodules of Cytisus villosus growing in Northeastern Algeria were characterized by genomic and phenotypic analyses. Isolates were grouped into sixteen different patterns by PCR-RAPD. The phylogenetic status of one representative isolate from each pattern was examined by multilocus sequence analyses of four housekeeping genes (16S rRNA, glnII, recA, and atpD) and one symbiotic gene (nodC).
View Article and Find Full Text PDF