S-adenosyl-L-methionine (SAM) is the major methyl donor in cells and it is also used for the biosynthesis of polyamines and the plant hormone ethylene. During climacteric ripening of tomato (Solanum lycopersicum 'Bonaparte'), ethylene production rises considerably which makes it an ideal object to study SAM involvement. We examined in ripening fruit how a 1-MCP treatment affects SAM usage by the three major SAM-associated pathways.
View Article and Find Full Text PDFPlant Physiol
November 2012
The concept of system 1 and system 2 ethylene biosynthesis during climacteric fruit ripening was initially described four decades ago. Although much is known about fruit development and climacteric ripening, little information is available about how ethylene biosynthesis is regulated during the postclimacteric phase. A targeted systems biology approach revealed a novel regulatory mechanism of ethylene biosynthesis of tomato (Solanum lycopersicum) when fruit have reached their maximal ethylene production level and which is characterized by a decline in ethylene biosynthesis.
View Article and Find Full Text PDF5'-Methylthioadenosine (MTA) is the common by-product of polyamine (PA), nicotianamine (NA), and ethylene biosynthesis in Arabidopsis (Arabidopsis thaliana). The methylthiol moiety of MTA is salvaged by 5'-methylthioadenosine nucleosidase (MTN) in a reaction producing methylthioribose (MTR) and adenine. The MTN double mutant, mtn1-1mtn2-1, retains approximately 14% of the MTN enzyme activity present in the wild type and displays a pleiotropic phenotype that includes altered vasculature and impaired fertility.
View Article and Find Full Text PDFThe methionine or Yang cycle recycles Met from 5'-methylthioadenosine (MTA) which is produced from S-adenosyl-L-methionine (SAM) as a by-product of ethylene, polyamines, and nicotianamine (NA) synthesis. MTA nucleosidase is encoded by two genes in Arabidopsis thaliana, MTN1 and MTN2. Analysis of T-DNA insertion mutants and of wt revealed that MTN1 provides approximately 80% of the total MTN activity.
View Article and Find Full Text PDF