Background: Monitoring the activity and morphology of neuron-astrocyte networks in culture is a powerful tool for studying dynamics, structure, and communication in neuron-astrocyte networks independently or as a model of the sub-brain network. These cultures are known to produce stereotypical patterns of activity, e.g.
View Article and Find Full Text PDFThe concerted activity of neuron-glia networks is responsible for the fascinating dynamics of brain functions. Although these networks have been extensively investigated using a variety of experimental (in vivo and in vitro) and theoretical models, the manner by which neuron-glia networks interact is not fully understood. In particular, how neuromodulators influence network-level signaling between neurons and astrocytes was poorly addressed.
View Article and Find Full Text PDFMetastasizing tumor cells migrate through the surrounding tissue and extracellular matrix toward the blood vessels, in order to colonize distant organs. They typically move in a dense environment, filled with other cells. In this work we study cooperative effects between neighboring cells of different types, migrating in a maze-like environment with directional cue.
View Article and Find Full Text PDF