Publications by authors named "Yasmim G Goncalves"

Article Synopsis
  • - The study investigates a new protein, rEnd2, from a bacteriophage that targets and degrades the protective outer layer of bacteria, particularly focusing on its interaction with the antibiotic colistin and its effectiveness when paired with nanoparticles.
  • - The purification and analysis of rEnd2 showed it works best in neutral pH and warm temperatures, with a structural similarity to other known antibacterial proteins, but it loses effectiveness in the presence of certain surfactants.
  • - Despite demonstrating some ability to break down bacterial structure, rEnd2 was not effective enough on its own or even when combined with colistin, indicating the need for further research to improve its antimicrobial capabilities.
View Article and Find Full Text PDF

Despite the promising potential of Solanum plant glycoalkaloids in combating skin cancer, their clinical trials have been halted due to dose-dependent toxicity and poor water solubility. In this study, we present a rational approach to address these limitations and ensure colloidal stability of the nanoformulation over time by designing solid lipid-polymer hybrid nanoparticles (SLPH). Leveraging the biocompatible and cationic properties of polyaspartamides, we employed a new polyaspartamide derivative (P1) as a raw material for this class of nanostructures.

View Article and Find Full Text PDF

We describe the synthesis, physicochemical characterization, and antitumor assays of four novel analogous ruthenium(II) complexes with general formula -[Ru(N-L)(P-P)]PF, where P-P = bis(diphenylphosphine)methane (dppm, in complexes 1 and 2) or bis(diphenylphosphine)ethane (dppe, in complexes 3 and 4) and N-L = 5,6-diphenyl-4,5-dihydro-2-[1,2,4]triazine-3-thione (Btsc, in complexes 1 and 3) or 5,6-diphenyltriazine-3-one (Bsc, in complexes 2 and 4). The data were consistent with arrangement of the biphosphine ligands. For the Btsc and Bsc ligands, the data pointed to monoanionic bidentate coordination to ruthenium(II) through , and ,, respectively.

View Article and Find Full Text PDF

Chikungunya fever is a disease caused by the Chikungunya virus (CHIKV) that is transmitted by the bite of the female of sp. mosquito. The symptoms include fever, muscle aches, skin rash, and severe joint pains.

View Article and Find Full Text PDF

Ruthenium complexes have been extensively explored as potential molecules for cancer treatment. Considering our previous findings on the remarkable cytotoxic activity exhibited by the ruthenium (II) complex 3-hydroxy-4-methoxybenzoate (hmxbato)-cis-[Ru(ŋ-OCCHO)(dppm)]PF against Leishmania promastigotes and also the similar metabolic characteristics between trypanosomatids and tumor cells, the present study aimed to analyze the anticancer potential of hmxbato against lung tumor cells, as well as the partial death mechanisms involved. Hmxbato demonstrated selective cytotoxicity against A549 lung tumor cells.

View Article and Find Full Text PDF

Some metallodrugs that exhibit interesting biological activity contain transition metals such as ruthenium, and have been extensively exploited because of their antiparasitic potential. In previous study, we reported the remarkable anti-Leishmania activity of precursor cis-[RuCl(dppm)], where dppm = bis(diphenylphosphino)methane, and new ruthenium(II) complexes, cis-[Ru(η-OCCH)(dppm)]PF (bbato), cis-[Ru(η-OCCHS)(dppm)]PF (mtbato) and cis-[Ru(η-OCCHO)(dppm)]PF (hmxbato) against some Leishmania species. In view of the promising activity of the hmxbato complex against Leishmania (Leishmania) amazonensis promastigotes, the present work investigated the possible parasite death mechanism involved in the action of this hmxbato and its precursor.

View Article and Find Full Text PDF

Leishmaniasis is a parasitic disease caused by protozoa of the genus Leishmania. The many complications presented by the current treatment - including high toxicity, high cost and parasite resistance - make the development of new therapeutic agents indispensable. The present study aims to evaluate the anti-Leishmania potential of new ruthenium(II) complexes, cis‑[Ru(η-OCR)(dppm)]PF, with dppm=bis(diphenylphosphino)methane and R=4-butylbenzoate (bbato) 1, 4-(methylthio)benzoate (mtbato) 2 and 3-hydroxy-4-methoxybenzoate (hmxbato) 3, in promastigote cytotoxicity and their effect on parasite-host interaction.

View Article and Find Full Text PDF