Publications by authors named "Yasir S A Gorafi"

Article Synopsis
  • This review talks about how to use wild grasses to make modern bread wheat better for dealing with climate change and the need for more food.
  • It focuses on a special type of wheat called synthetic hexaploid wheat and mentions a specific wild grass called Aegilops tauschii that can help wheat become stronger against drought, heat, and salty conditions.
  • The review also highlights the scientific challenges faced when using wild grasses in wheat breeding and suggests using new technology to improve breeding methods for even better results.
View Article and Find Full Text PDF

In the face of climate change, bringing more useful alleles and genes from wild relatives of wheat is crucial to develop climate-resilient varieties. We used two populations of backcrossed recombinant inbred lines (BIL1 and BIL2), developed by crossing and backcrossing two intra-specifically diverse accessions from lineage 1 and lineage 2, respectively, with the common wheat cultivar 'Norin 61'. This study aimed to identify quantitative trait loci (QTLs) associated with heat stress (HS) tolerance.

View Article and Find Full Text PDF
Article Synopsis
  • Wheat needs new genes from wild relatives to adapt to climate change because it has low genetic diversity.
  • A study created a system to investigate traits in wheat and found a special gene for seed dormancy, which helps prevent seeds from sprouting too early.
  • They discovered a new gene linked to seed dormancy, and the research could help make better wheat varieties for farming in changing conditions.
View Article and Find Full Text PDF

Background: Increasing grain nutritional value in sorghum (Sorghum bicolor) is a paramount breeding objective, as is increasing drought resistance (DR), because sorghum is grown mainly in drought-prone areas. The genetic basis of grain nutritional traits remains largely unknown. Marker-assisted selection using significant loci identified through genome-wide association study (GWAS) shows potential for selecting desirable traits in crops.

View Article and Find Full Text PDF

Wild relatives of modern crops represent a promising source of genetic variation that can be mined for adaptations to climate change. Aegilops tauschii, the D-sub-genome progenitor of bread wheat (Triticum aestivum), constitutes a reservoir of genetic diversity for improving bread wheat performance and environmental resilience. Leaf hairiness plays an essential biological role in plant defense against biotic and abiotic stress.

View Article and Find Full Text PDF

Heat stress during grain filling is considered one of the major abiotic factors influencing wheat grain yield and quality in arid and semi-arid regions. We studied the effect of heat stress on flour quality and grain yield at moderate and continuous heat stress under natural field conditions using 147 lines of wheat multiple synthetic derivatives (MSD) containing introgressions. The study aimed to identify the marker-trait associations (MTAs) for the quality traits and grain yield under heat-stress conditions and identify stress-resilient germplasm-combining traits for good flour quality and grain yield.

View Article and Find Full Text PDF

Transposable elements (TEs) constitute ~80% of the complex bread wheat genome and contribute significantly to wheat evolution and environmental adaptation. We studied 52 TE insertion polymorphism markers to ascertain their efficiency as a robust DNA marker system for genetic studies in wheat and related species. Significant variation was found in miniature inverted-repeat transposable element (MITE) insertions in relation to ploidy with the highest number of "full site" insertions occurring in the hexaploids (32.

View Article and Find Full Text PDF

Wheat is highly sensitive to temperature beyond the optimum. To improve wheat adaptation to heat stress, the best option is to exploit the diversity of wild wheat progenitors. This study aimed to identify germplasm and quantitative trait loci associated with heat stress tolerance from wild emmer wheat diversity.

View Article and Find Full Text PDF

The multiple derivative lines (MDLs) characterized in this study offer a promising strategy for harnessing the diversity of wild emmer wheat for durum and bread wheat improvement. Crop domestication has diminished genetic diversity and reduced phenotypic plasticity and adaptation. Exploring the adaptive capacity of wild progenitors offer promising opportunities to improve crops.

View Article and Find Full Text PDF

Twenty-four wheat lines, developed by Coss. introgressions and previously selected for heat or salinity stress tolerance, were evaluated under a drought-rewatering-drought cycle for two years. The objective was to select breeding lines that are resilient to more than one abiotic stress.

View Article and Find Full Text PDF

GWAS on a bread wheat panel with high D genome diversity identified novel alleles and QTLs associated with resilience to combined heat and drought stress under natural field conditions. As heat (H) and drought stresses occur concurrently under field conditions, studying them separately offers limited opportunities for wheat improvement. Here, a wheat diversity panel containing Aegilops tauschii introgressions was evaluated under H and combined heat-drought (HD) stresses to identify quantitative trait loci (QTLs) associated with resilience to the stresses, and to assess the practicability of harnessing Ae.

View Article and Find Full Text PDF

Heat stress during grain filling has been documented to decrease wheat grain yield and quality in arid regions worldwide. We studied the effect of heat stress on wheat flour quality in heat tolerant cultivars to define the effects of heat stress on flour quality and to identify germplasm combining traits for heat tolerance and good flour quality. We studied the kernel phenotypic traits, the expression of seed storage proteins (SSPs), and the resulting flour quality under heat and normal conditions.

View Article and Find Full Text PDF

Kernel weight and shape-related traits are inherited stably and increase wheat yield. Narrow genetic diversity limits the progress of wheat breeding. Here, we evaluated kernel weight and shape-related traits and applied genome-wide association analysis to a panel of wheat multiple synthetic derivative (MSD) lines.

View Article and Find Full Text PDF

, the D-genome donor of bread wheat, is a storehouse of genetic diversity that can be used for wheat improvement. This species consists of two main lineages (TauL1 and TauL2) and one minor lineage (TauL3). Its morpho-physiological diversity is large, with adaptations to a wide ecological range.

View Article and Find Full Text PDF

Climate warming poses challenges for food production at low latitudes, particularly in arid regions. Sudan, where wheat demand could triple by 2050, has the world's hottest wheat-growing environments, and observed yield declines in hot seasons are prompting the national government to prepare for a warming of 1.5-4.

View Article and Find Full Text PDF

Stay-green trait enhances sorghum adaptation to post-flowering drought. Six stay-green backcross introgression lines (BILs) carrying one or more stay-green QTLs (Stg1-4) and their parents were characterized under non-stress (W: 100% of soil field capacity (FC)) and two levels of post-flowering drought (W: 75% FC; W: 50% FC) in a controlled condition. We aimed to study the response and identify the drought threshold of these QTLs under different levels of post-flowering drought and find traits closely contributing to grain yield (GY) under different drought severity.

View Article and Find Full Text PDF

Precise utilization of wild genetic resources to improve the resistance of their cultivated relatives to environmental growth limiting factors, such as salinity stress and diseases, requires a clear understanding of their genomic relationships. Although seriously criticized, analyzing these relationships in tribe Triticeae has largely been based on meiotic chromosome pairing in hybrids of wide crosses, a specialized and labourious strategy. In this study, DArTseq, an efficient genotyping-by-sequencing platform, was applied to analyze the genomes of 34 Triticeae species.

View Article and Find Full Text PDF

Developing wheat-alien chromosome introgression lines to improve bread wheat's resistance to stresses, such as drought, salinity stress and diseases, requires reliable markers to identify and characterize the alien chromatins. Leymus mollis is a wild relative of bread wheat resistant to salinity and economically important diseases of wheat, but its genome sequence and cytological markers are not available. We devised a molecular marker-assisted strategy for L.

View Article and Find Full Text PDF

The multiple synthetic derivatives platform described in this study will provide an opportunity for effective utilization of Aegilops tauschii traits and genes for wheat breeding. Introducing genes from wild relatives is the best option to increase genetic diversity and discover new alleles necessary for wheat improvement. A population harboring genomic fragments from the diploid wheat progenitor Aegilops tauschii Coss.

View Article and Find Full Text PDF

Background: The tertiary gene pool of bread wheat, to which Leymus racemosus belongs, has remained underutilized due to the current limited genomic resources of the species that constitute it. Continuous enrichment of public databases with useful information regarding these species is, therefore, needed to provide insights on their genome structures and aid successful utilization of their genes to develop improved wheat cultivars for effective management of environmental stresses.

Results: We generated de novo DNA and mRNA sequence information of L.

View Article and Find Full Text PDF

In wheat ( L.) high temperature (≥30°C) during grain filling leads to considerable reduction in grain yield. We studied 400 multiple synthetic derivatives (MSD) lines to examine the genetic variability of heat stress-adaptive traits and to identify new sources of heat tolerance to be used in wheat breeding programs.

View Article and Find Full Text PDF

Heat stress is detrimental to wheat ( L.) productivity. In this study, we aimed to select heat-tolerant plants from a multiple synthetic derivatives (MSD) population and evaluate their agronomic and physiological traits.

View Article and Find Full Text PDF

To meet the increased demand for wheat consumption, wheat cultivation in Sudan expanded southward to latitudes lower than 15°N, entering a new and warmer environment. Consequently, wheat breeders developed several wheat genotypes with high yields under these environmental conditions; however, the evaluation of the end-use quality of these genotypes is scarce. In this study, we assessed the end-use quality attributes of 20 wheat genotypes grown in three different environments in the Sudan (Wad Medani, Hudeiba, and Dongola).

View Article and Find Full Text PDF

Under the changing climate, early flowering is advantageous to escape terminal heat and drought. Previously during evaluation of 14 chromosome introgression lines (ILs), we found three ILs that flowered a month earlier than their wheat background Chinese Spring (CS). This paper describes the cause of the early flowering in the ILs and provides insight into the evolution of spring wheat from the winter wheat.

View Article and Find Full Text PDF