The novel coronavirus SARS-CoV-2, which wrecked havoc around the world in the recent years through COVID-19, gains entry into the host cell through various receptors. Development of therapies targeting host-pathogen interaction will be a key to curb the infection as it potentially suppresses viral attachment and entry into the host. Boundless bioactives abundant in natural resources are the important source of new as well as safer alternatives.
View Article and Find Full Text PDFThe innate immune signals are the front line of host defense against bacterial pathogens. Pathogen-induced harmful effects, such as reduced neuronal signals to the intestine, affect the host's food sensing and dwelling behavior. Here, we report that dopamine and kpc-1 signals control the intestinal innate immune responses through the p38/PMK-1 MAPK signaling pathway in C.
View Article and Find Full Text PDFTaste is crucial in driving food choice and preference. Umami is one of the basic tastes defined by characteristic deliciousness and mouthfulness that it imparts to foods. Identification of ingredients to enhance umami taste is of significant value to food industry.
View Article and Find Full Text PDFKlebsiella aerogenes (previously known as Enterobacter aerogenes) is a common opportunistic pathogen that infect the respiratory tract and central nervous system. However, how it interferes the host regulatory mechanism has not been previously described. When C.
View Article and Find Full Text PDFKlebsiella aerogenes, previously known as Enterobacter aerogenes, is a gram-negative bacterium typically present in the gastrointestinal tract. While numerous studies reported the pathogenicity and drug resistance of this bacterium there remains a lack of comprehensive research on K. aerogenes induced alterations in the host cellular mechanisms.
View Article and Find Full Text PDFInnumerable pathogens including RNA viruses have catastrophic pandemic propensity, in turn, SARS-CoV-2 infection is highly contagious. Emergence of SARS-CoV-2 variants with high mutation rate additionally codifies infectious ability of virus and arisen clinical imputations to human health. Although, our knowledge of mechanism of virus infection and its impact on host system has been substantially demystified, uncertainties about the emergence of virus are still not fully understood.
View Article and Find Full Text PDFIntroduction: Immunomodulators are agents, which can modulate the immune response to specific antigens, while causing least toxicity to the host system. Being part of the modern vaccine formulations, these compounds have contributed remarkably to the field of therapeutics. Despite the successful record maintained by these agents, the requirement of novel immunomodulators keeps increasing due to the increasing severity of diseases.
View Article and Find Full Text PDFIGF-I plays an important role in smooth muscle cell proliferation and migration. In vascular smooth muscle cells cultured in 25 mm glucose, IGF-I stimulated a significant increase in Src homology 2 domain containing protein tyrosine phosphatase substrate-1 (SHPS-1) phosphorylation compared with 5 mm glucose and this increase was required for smooth muscle cell proliferation. A proteome-wide screen revealed that carboxyl-terminal SRC kinase homologous kinase (CTK) bound directly to phosphotyrosines in the SHPS-1 cytoplasmic domain.
View Article and Find Full Text PDFIGF-I is structurally related to proinsulin and when administered to human subjects it enhances insulin sensitivity. However because of its growth promoting properties and its relationship to growth hormone, it has been proposed as a etiologic factor in the development of diabetic complications. This review discusses recently published data regarding the ability of hyperglycemia to sensitize cells that are capable of dedifferentiating to the growth promoting effects of IGF-I.
View Article and Find Full Text PDFThe IGF-I pathway and renin-angiotensin-aldosterone axis are both involved in the pathogenesis of hypertension and atherosclerosis, but no information is available about IGF-I and aldosterone interaction or their potential synergistic effects in vascular smooth muscle cells (VSMCs). The aims of this study were to investigate whether aldosterone influences IGF-I signaling and to determine the mechanism(s) by which aldosterone affects IGF-I function. Aldosterone resulted in significant increases in the Akt (1.
View Article and Find Full Text PDFIn vascular smooth muscle cells, exposed to hyperglycemia and insulin-like growth factor-I (IGF-I), SHPS-1 functions as a scaffold protein, and a signaling complex is assembled that leads to AKT activation. However, the underlying mechanism by which formation of this complex activates the kinase that phosphorylates AKT (Thr(308)) is unknown. Therefore, we investigated the mechanism of PDK1 recruitment to the SHPS-1 signaling complex and the consequences of disrupting PDK1 recruitment for downstream signaling.
View Article and Find Full Text PDFHyperglycemia has been shown to induce the p66shc expression leading to increased reactive oxygen species (ROS) generation and apoptosis. In the present study, we demonstrated that hyperglycemia induced p66shc expression in vascular smooth muscle cells. This induction was associated with an increase in apoptosis as assessed by the increase of capspase-3 enzymatic activity, cleaved caspase-3 protein, and the number of dead cells.
View Article and Find Full Text PDFIn vascular smooth muscle cells, IGF-I stimulates SHPS-1/SHP2/Src complex formation which is required for IGF-I-stimulated cell proliferation. Using SHP2/Src silencing and a Pyk2/Y402F mutant, we showed that Pyk2 was also recruited to the SHPS-1 complex. Pyk2 recruitment to SHPS-1 is mediated via the interaction of Pyk2 Tyr402 and the Src in response to IGF-I.
View Article and Find Full Text PDFVascular smooth muscle cells maintained in normal (5.6 mm) glucose respond to insulin-like growth factor-I (IGF-I) with increased protein synthesis but do not proliferate. In contrast, hyperglycemia alters responsiveness to IGF-I, resulting in increased SHPS-1 phosphorylation and assembly of a signaling complex that enhances MAPK and phosphatidylinositol 3-kinase pathways.
View Article and Find Full Text PDFHuman sperm-associated antigen 11 (SPAG11) is closely related to beta-defensins in structure, expression, and function. Like the beta-defensins, SPAG11 proteins are predominantly expressed in the male reproductive tract, where their best-known major roles are in innate host defense and reproduction. Although several hypotheses have emerged to describe the evolution of beta-defensin and SPAG11 multifunctionality, few describe these multiple functions in terms of defensin interactions with specific proteins.
View Article and Find Full Text PDFTyrosine phosphatase non-receptor type substrate-1 (SHPS-1), a transmembrane protein, plays a vital role in cell migration and proliferation. Our previous studies have shown that insulin-like growth factor-I (IGF-I) stimulates SHPS-1 phosphorylation, leading to recruitment of SHP-2, c-Src, Shc, and Grb2.p85 to phosphorylated SHPS-1.
View Article and Find Full Text PDFInsulin-like growth factor-I (IGF-I) stimulates vascular smooth muscle cell proliferation and migration by activating both MAPK and phosphatidylinositol 3-kinase (PI3K). Vascular smooth muscle cells (VSMCs) maintained in 25 mm glucose sustain MAPK activation via increased Shc phosphorylation and Grb2 association resulting in an enhanced mitogenic response compared with cells grown in 5 mm glucose. PI3K plays a major role in IGF-I-stimulated VSMC migration, and hyperglycemia augments this response.
View Article and Find Full Text PDFThe epididymal beta-defensins have evolved by repeated gene duplication and divergence to encode a family of proteins that provide direct protection against pathogens and also support the male reproductive tract in its primary function. Male tract defensins also facilitate recovery from pathogen attack. The beta-defensins possess ancient conserved sequence and structural features widespread in multi-cellular organisms, suggesting fundamental roles in species survival.
View Article and Find Full Text PDFComparative genomic analyses have yielded valuable insights into conserved and divergent aspects of gene function, regulation, and evolution. Herein, we describe the characterization of a mouse beta-defensin gene cluster locus on chromosome 2F6. In addition, we present the evolutionary analysis of this cluster and its human, rhesus, and rat orthologs.
View Article and Find Full Text PDFBeta-defensins are small cationic peptides exhibiting broad spectrum antimicrobial properties. In humans, many beta-defensin genes are located within a cluster on chromosome 8p23. The sperm associated antigen 11 (SPAG11) gene is contained in this cluster and is unusual among the human beta-defensins due to its complex genomic structure and mRNA splicing pattern.
View Article and Find Full Text PDFBackground: Beta-defensins are small cationic peptides that exhibit broad spectrum antimicrobial properties. The majority of beta-defensins identified in humans are predominantly expressed in the male reproductive tract and have roles in non-immunological processes such as sperm maturation and capacitation. Characterization of novel defensins in the male reproductive tract can lead to increased understanding of their dual roles in immunity and sperm maturation.
View Article and Find Full Text PDFSpermatozoa bind a variety of proteins as they pass through the proximal regions of the epididymis, where they acquire forward motility and fertilizing ability. Recent evidence indicates that certain epididymis-specific secretory proteins that bind sperm have antibacterial activity and may function as part of the innate immune system. We reported earlier that ESC42, now designated human beta-defensin 118 (DEFB118), is a sperm-binding protein.
View Article and Find Full Text PDF