Publications by authors named "Yashar Mehrbani Azar"

The advancement of autologous mesenchymal stem cell (MSC) therapy for the treatment of non-healing diabetic wounds is hampered by endogenous MSC dysfunction and limited viability of cells post-transplantation into the pathological wound environment. The development of effective strategies to restore the functional capabilities of these impaired MSCs prior to transplantation may be a key to their ultimate success as wound repair mediators. The current study therefore investigated whether antioxidant preconditioning [7.

View Article and Find Full Text PDF

Disease-associated impairment/dysfunction of stem cell populations is prominent in chronic metabolic and inflammatory diseases, such as type 2 diabetes mellitus (DM) where the multifunctional properties (viability, proliferation, paracrine secretion, multilineage differentiation) of bone marrow resident mesenchymal stem cells (MSCs) can be affected. The growth and viability impairments make it difficult to study the underlying molecular mechanisms related to the dysfunction of these cells in vitro. We have consequently optimized the isolation and culture conditions for impaired/dysfunctional bone marrow MSCs from B6.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are a promising therapeutic tool for the treatment of nonhealing diabetic wounds. The pathological nature of the niche microenvironment limits the use of autologous cell therapy in diabetic patients. Prolonged exposure of endogenous MSCs to a pathological microenvironment in vivo reduces their ability to respond to environmental cues.

View Article and Find Full Text PDF

Myosin-1C (MYO1C) is a tumor suppressor candidate located in a region of recurrent losses distal to TP53. Myo1c can tightly and specifically bind to PIP2, the substrate of Phosphoinositide 3-kinase (PI3K), and to Rictor, suggesting a role for MYO1C in the PI3K pathway. This study was designed to examine MYO1C expression status in a panel of well-stratified endometrial carcinomas as well as to assess the biological significance of MYO1C as a tumor suppressor in vitro.

View Article and Find Full Text PDF