Fungal communities play a key role in the decomposition of crop residues and affect soil organic carbon (SOC) dynamics. Conservation tillage enhances SOC sequestration and mitigate global climate change. However, the impact of long-term tillage practices on fungal community diversity and its relation to SOC stock remains unclear.
View Article and Find Full Text PDFRecommended management practices (RMPs, e.g., manuring, no-tillage, crop residue return) can increase soil organic carbon (SOC), reduce greenhouse gas emissions, and maintain soil health in croplands.
View Article and Find Full Text PDFConservation agriculture (CA) can be an important strategy for improving soil organic carbon (SOC) and total nitrogen (TN). Numerous studies have examined SOC and TN dynamics in different cropping systems. However, there is some uncertainty regarding the relative impacts of some CA practices, and it is not always clear how other agricultural management, particularly nitrogen addition, interacts with these practices to influence SOC and TN sequestration.
View Article and Find Full Text PDFMechanisms of soil organic carbon (SOC) stabilization have been widely studied due to their relevance in the global carbon cycle. No-till (NT) has been frequently adopted to sequester SOC; however, limited information is available regarding whether sequestered SOC will be stabilized for long term. Thus, we reviewed the mechanisms affecting SOC stability in NT systems, including the priming effects (PE), molecular structure of SOC, aggregate protection, association with soil minerals, microbial properties, and environmental effects.
View Article and Find Full Text PDFThe sensitivity of soil organic carbon (SOC) mineralization to temperature could affect the future atmospheric CO levels under global warming. Sieved soils are widely used to assess SOC mineralization and its temperature sensitivity (Q) via laboratory incubation. However, sieved soils cause a temporary increase in mineralization due to the destruction of soil structure, which can affect estimates of SOC mineralization, especially in soils managed with no-till (NT).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2018
Farmers often resort to an occasional tillage (strategic tillage (ST)) operation to combat constraints of no-tillage (NT) farming systems. There are conflicting reports regarding impacts of ST and a lack of knowledge around when, where and how ST is implemented to maximise its benefits without impacting negatively on soil and environment. We established 14 experiments during 2012-2015 on farms with long-term history of continuous NT to (i) quantify the associated risks and benefits to crop productivity, soil and environmental health and (ii) explore key factors that need to be considered in decisions to implement ST in an otherwise NT system.
View Article and Find Full Text PDF