Catheter-associated urinary tract infections (CAUTIs) pose a significant challenge in hospital settings. Current solutions available on the market involve incorporating antimicrobials and antiseptics into catheters. However, challenges such as uncontrolled release leading to undesirable toxicity, as well as the prevalence of antimicrobial resistance reduce the effectiveness of these solutions.
View Article and Find Full Text PDFThe rise of multidrug-resistant bacterial infections and the dwindling supply of newly approved antibiotics have emerged as a grave threat to public health. Toward the ever-growing necessity of the development of novel antimicrobial agents, herein, we synthesized a series of cationic amphiphilic biocides featuring two cationic headgroups separated by different hydrophobic spacers, accompanied by the inclusion of two lipophilic tails through cleavable ester functionality. The detailed aggregation properties offered by these biocides were investigated by small-angle neutron scattering (SANS) and conductivity.
View Article and Find Full Text PDFThe emergence of antimicrobial resistance, coupled with the occurrence of persistent systemic infections, has already complicated clinical therapy efforts. Moreover, infections are also accompanied by strong inflammatory responses, generated by the host's innate and adaptive immune systems. The closely intertwined relationship between bacterial infection and inflammation has multiple implications on the ability of antibacterial therapeutics to tackle infection and inflammation.
View Article and Find Full Text PDFThe problem of antibiotic resistance is on the rise, with multidrug-resistant strains emerging even to the last resort antibiotics. The drug discovery process is often stalled by stringent cut-offs required for effective drug design. In such a scenario, it is prudent to delve into the varying mechanisms of resistance to existing antibiotics and target them to improve antibiotic efficacy.
View Article and Find Full Text PDFChem Commun (Camb)
February 2022
Vancomycin, a blockbuster antibiotic of the glycopeptide class, has been a life-saving therapeutic against multidrug-resistant Gram-positive infections. The emergence of glycopeptide resistance has however enunciated the need to develop credible alternatives with potent activity against vancomycin-resistant bacteria. Medicinal chemistry has responded to this challenge through various strategies, one of them being the development of semisynthetic analogues.
View Article and Find Full Text PDFGlycopeptides, a class of cell wall biosynthesis inhibitors, have been the antibiotics of choice against drug-resistant Gram-positive bacterial infections. Their unique mechanism of action involving binding to the substrate of cell wall biosynthesis and substantial longevity in clinics makes this class of antibiotics an attractive choice for drug repurposing and reprofiling. However, resistance to glycopeptides has been observed due to alterations in the substrate, cell wall thickening, or both.
View Article and Find Full Text PDF