The effect of phenethyl isothiocyanate (PEITC), a component of cruciferous vegetables, on the initiation and progression of cancer was investigated in a chemically induced estrogen-dependent breast cancer model. Breast cancer was induced in female Sprague Dawley rats (8 weeks old) by the administration of N-methyl nitrosourea (NMU). Animals were administered 50 or 150 µmol/kg oral PEITC and monitored for tumor appearance for 18 weeks.
View Article and Find Full Text PDFQuantitative structure pharmacokinetic relationship (QSPKR) modeling can be used to predict the biliary clearance and percentage of dose eliminated in bile (PD(b)) in humans before clinical studies. Recently, a QSPKR model based on in-house compounds was derived using simple physicochemical descriptors to predict the PD(b) in rats (Drug Metab Dispos 38:422-430, 2010). Our objective was to evaluate the QSPKR model derived for the prediction of PD(b) for our larger dataset of 164 compounds in the rat and for the 97 compounds in our human dataset (AAPS J 11:511-525, 2009).
View Article and Find Full Text PDFThe aim of this study was to evaluate the prediction performance of various allometric scaling methods in predicting human biliary clearance (CL(b)) from data in rats or multiple animal species and to compare the prediction performance with that of quantitative structure pharmacokinetic relationship (QSPKR) models. CL(b) data of parent drugs in rats and humans were collected from the literature for 18 compounds. A simple allometric approach was applied to CL(b) or unbound CL(b) using 0.
View Article and Find Full Text PDFMolecular weight (MW) is known as an important factor of biliary excretion in rats, guinea pigs, rabbits and humans. The objective of this study was to evaluate the relationship between the biliary excretion and MW of drugs in dogs. Data on the percentage of dose excreted into bile as parent drug (PD(b)) in dogs were collected from the literature for 134 compounds.
View Article and Find Full Text PDFBreast cancer resistance protein (ABCG2), the newest ABC transporter, was discovered independently by three groups in the late 1990s. ABCG2 is widely distributed in the body with expression in the brain, intestine, and liver, among others. ABCG2 plays an important role by effluxing drugs at the blood-brain, blood-testis, and maternal-fetal barriers and in the efflux of xenobiotics at the small intestine and kidney proximal tubule brush border and liver canalicular membranes.
View Article and Find Full Text PDFThe aims were (1) to evaluate the molecular weight (MW) dependence of biliary excretion and (2) to develop quantitative structure-pharmacokinetic relationships (QSPKR) to predict biliary clearance (CL(b)) and percentage of administered dose excreted in bile as parent drug (PD(b)) in rats and humans. CL(b) and PD(b) data were collected from the literature for rats and humans. Receiver operating characteristic curve analysis was utilized to determine whether a MW threshold exists for PD(b).
View Article and Find Full Text PDF