Using the microwave-assisted method, novel FeO/Zn-metal organic framework magnetic nanostructures were synthesized. The crystallinity, thermal stability, adsorption/desorption isotherms, morphology/size distribution, and magnetic hysteresis of synthesized FeO/Zn-metal organic framework magnetic nanostructures were characterized by XRD patterns, TGA curve, BET adsorption/desorption technique, SEM image, and VSM curve, respectively. After confirming the FeO/Zn-metal organic framework magnetic nanostructures, its antimicrobial properties against Gram-positive bacterial, Gram-negative bacterial, and fungal strains based on minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum fungicidal concentration (MFC) values were studied.
View Article and Find Full Text PDFMycotoxin contamination in foodstuffs and agricultural products has posed a serious hazard to human health and raised international concern. The progress of cost-effective, facile, rapid and reliable analytical tools for mycotoxin determination is in urgent need. In this regard, the potential utility of metal-organic frameworks (MOFs) as a class of crystalline porous materials has sparked immense attention due to their large specific surface area, adjustable pore size, nanoscale framework structure and good chemical stability.
View Article and Find Full Text PDF