Publications by authors named "Yasemin Oztekin"

Due to their various beneficial application-based properties, such as behavior, structure, and size, the synthesis of silver nanoparticles (Ag-NPs) with different structures has become an interesting yet common task for researchers to produce nanostructures for applications in various fields. This is because silver nanoparticles have interesting and unique properties, such as optical and catalytic, resulting from their different structures and sizes. These properties extend the use of nanostructures in various fields of research, especially in medicine, pharmacy, electronics, Also, variations in their parameters affect the structures and sizes of Ag-NPs.

View Article and Find Full Text PDF

This study is focused on the investigation of electrocatalytic effect of glucose oxidase (GOx) immobilized on the graphite rod (GR) electrode. The enzyme modified electrode was prepared by encapsulation of immobilized GOx within enzymatically formed poly(1,10-phenanthroline-5,6-dione) (pPD) film. The electrochemical responses of such enzymatic electrode (pPD/GOx/GR) vs.

View Article and Find Full Text PDF

Poly(3-aminophenylboronic acid), (PAPBA) film was formed on the graphite rod surface by potential cycling. The PAPBA-modified graphite rod (PAPBA/GR) electrode prepared in this way was used for potentiometric fluoride determination. The linear calibration range was from 5×10(-4) to 5×10(-2)M with the slope of the linear part of the calibration curve of 42.

View Article and Find Full Text PDF

Applicability of square wave voltammetry for the determination of Cu(II) ions by PolyLut/GC and PolyKae/GC electrodes was evaluated in this study. For this luteolin and kaempferol were electrochemically polymerized on glassy carbon (GC) electrode surface in order to get polyluteolin and polykaempferol-modified glassy carbon electrodes (PolyLut/GC and PolyKae/GC, correspondingly). The formation of polyphenol layer on the GC electrode surface was evidenced by atomic force microscopy.

View Article and Find Full Text PDF

This study reports direct electron transfer (DET) from immobilized glucose oxidase (GOx) via grafted and electropolymerized 1,10-phenanthroline monohydrate (PMH). The layer of poly-1,10-phenanthroline (PPMH) was gained via electrochemical deposition, which was used to create the PPMH-modified GC-electrode (PPMH/GC-electrode). Further, the GOx was immobilized on the PPMH/GC-electrode.

View Article and Find Full Text PDF

This study is focused on possible application of some 1,10-phenanthroline derivatives (PDs) in the development of biosensors and biofuel cells. Differently from some other studies, the PDs that were not involved into structures of metal complexes were investigated. Five PDs [1,10-phenanthroline monohydrate (PMH); 5-nitro-1,10-phenanthroline (5NP); 5-amino-1,10-phenanthroline (5AP), 5-amino,6-nitro-1,10-phenanthroline (5A6NP) and 5,6-diamino-1,10-phenanthroline (56DAP)] were selected for this study.

View Article and Find Full Text PDF

The regenaration of acid and base from the solutions containing metallic salts was achieved by salt splitting method (SSM) using not only anion-exchange membranes (AEM) but also cation-exchange membrane (CEM). In these experiments, while the ion exchange membrane was anion-exchange membrane, acid solutions were used as an anolyte and different salts of potassium were used as a catholyte. In addition to these experiments, while the ion exchange membrane was cation-exchange membrane, base solutions were used as a catholyte and different salts of potassium were used as an anolyte.

View Article and Find Full Text PDF