Bayesian deep learning (BDL) has emerged as a powerful technique for quantifying uncertainty in classification tasks, surpassing the effectiveness of traditional models by aligning with the probabilistic nature of real-world data. This alignment allows for informed decision-making by not only identifying the most likely outcome but also quantifying the surrounding uncertainty. Such capabilities hold great significance in fields like medical diagnoses and autonomous driving, where the consequences of misclassification are substantial.
View Article and Find Full Text PDFModern societies are exposed to a myriad of risks ranging from disease to natural hazards and technological disruptions. Exploring how the awareness of risk spreads and how it triggers a diffusion of coping strategies is prominent in the research agenda of various domains. It requires a deep understanding of how individuals perceive risks and communicate about the effectiveness of protective measures, highlighting learning and social interaction as the core mechanisms driving such processes.
View Article and Find Full Text PDFBackground: Millions of people worldwide are exposed to deadly infectious diseases on a regular basis. Breaking news of the Zika outbreak for instance, made it to the main media titles internationally. Perceiving disease risks motivate people to adapt their behavior toward a safer and more protective lifestyle.
View Article and Find Full Text PDF