Publications by authors named "Yaseen Mohammed"

Article Synopsis
  • Ozone and ultraviolet-C (UVC) radiation are being studied to help kill harmful germs on plastic surfaces, especially those that are tough to get rid of.
  • UVC worked better than ozone in getting rid of the germs, completely eliminating them in 60 minutes, while ozone was less effective.
  • Using both ozone and UVC together was super effective, taking only 20 minutes to fully kill the germs, making this a promising way to fight infections on surfaces.
View Article and Find Full Text PDF

Background: Although milk is nutritionally valuable, it also serves as a significant medium for the transmission of pathogens and their toxins.

Aim: This study aimed to investigate the role of enterotoxin gene A (SEA) in the development of bovine mastitis. We accomplished this by examining milk through polymerase chain reaction (PCR) testing, amino acid substitution analysis, and phylogenetic analysis.

View Article and Find Full Text PDF

Cellular senescence is a hallmark of advanced age and a major instigator of numerous inflammatory pathologies. While endothelial cell (EC) senescence is aligned with defective vascular functionality, its impact on fundamental inflammatory responses in vivo at single-cell level remain unclear. To directly investigate the role of EC senescence on dynamics of neutrophil-venular wall interactions, we applied high resolution confocal intravital microscopy to inflamed tissues of an EC-specific progeroid mouse model, characterized by profound indicators of EC senescence.

View Article and Find Full Text PDF

Background: This study measured fluoride release from a light-cured orthodontic adhesive resin (Vega type) at three time intervals (one day, one week, and one month), investigated the rechargeability of the resin, and assessed its impact on shear bond strength in demineralized tooth surfaces.

Methods: This study used 30 recently extracted upper premolar teeth to explore the effects of fluoride release over specific time intervals. The teeth underwent demineralization and were categorized into groups based on time intervals: one day, one week, and one month.

View Article and Find Full Text PDF

The microbiological safety of medical equipment and general surfaces is paramount to both the well-being of patients and the public. The application of ozone (a potent oxidant) has been recognised and implemented for this purpose, globally. However, it has primarily been utilised in the gaseous and aqueous forms.

View Article and Find Full Text PDF
Article Synopsis
  • The use of gelatin and gelatin-blend polymers to create electrospun nanofibers has transformed the biomedical field, enhancing drug delivery and regenerative medicine scaffolds.
  • Electrospun gelatin nanofibers (GNFs) are praised for their high porosity, large surface area, and biocompatibility, but face challenges such as rapid degradation and poor mechanical strength.
  • To address these issues, cross-linking is necessary to improve GNFs' biological properties, making them suitable for diverse medical applications like wound healing and tissue engineering.
View Article and Find Full Text PDF

The control of infectious diseases can be improved via carefully designed decontamination equipment and systems. Research interest in ozone (a powerful antimicrobial agent) has significantly increased over the past decade. The COVID-19 pandemic has also instigated the development of new ozone-based technologies for the decontamination of personal protective equipment, surfaces, materials, and indoor environments.

View Article and Find Full Text PDF

The astonishing behavioural repertoires of social insects have been thought largely innate, but these insects have repeatedly demonstrated remarkable capacities for both individual and social learning. Using the bumblebee Bombus terrestris as a model, we developed a two-option puzzle box task and used open diffusion paradigms to observe the transmission of novel, nonnatural foraging behaviours through populations. Box-opening behaviour spread through colonies seeded with a demonstrator trained to perform 1 of the 2 possible behavioural variants, and the observers acquired the demonstrated variant.

View Article and Find Full Text PDF

With the advent of the COVID-19 pandemic, there has been a global incentive for applying environmentally sustainable and rapid sterilization methods, such as ultraviolet-C radiation (UVC) and ozonation. Material sterilization is a requirement for a variety of industries, including food, water treatment, clothing, healthcare, medical equipment, and pharmaceuticals. It becomes inevitable when devices and items like protective equipment are to be reused on/by different persons.

View Article and Find Full Text PDF

Ozone - a powerful antimicrobial agent, has been extensively applied for decontamination purposes in several industries (including food, water treatment, pharmaceuticals, textiles, healthcare, and the medical sectors). The advent of the COVID-19 pandemic has led to recent developments in the deployment of different ozone-based technologies for the decontamination of surfaces, materials and indoor environments. The pandemic has also highlighted the therapeutic potential of ozone for the treatment of COVID-19 patients, with astonishing results observed.

View Article and Find Full Text PDF

For decades, ozone has been known to have antimicrobial properties when dissolved or generated in water and when utilized in its gaseous form on different substrates. This property (the ability to be used in air and water) makes it versatile and applicable to different industries. Although the medium of ozonation depends on the specific process requirements, some industries have the inherent flexibility of medium selection.

View Article and Find Full Text PDF

The COVID-19 pandemic and its continuing emerging variants emphasize the need to discover appropriate treatment, where vaccines alone have failed to show complete protection against the new variants of the virus. Therefore, treatment of the infected cases is critical. This paper discusses the bio-guided isolation of three indole diketopiperazine alkaloids, neoechinulin A (), echinulin (), and eurocristatine (), from the Red Sea-derived MR2012.

View Article and Find Full Text PDF

Ozone treatment is an eco-friendly and cost-effective approach to achieve material disinfection, and this disinfection method is of utmost importance in the present global pandemic. The efficacy of ozone's oxidative potential on common microorganisms has been extensively studied, particularly in the food and water treatment industries. However, little is still understood regarding its antimicrobial capabilities for the treatment of textile substrates in air.

View Article and Find Full Text PDF

Introduction: Chronic cell leukemia discovered incidentally in extra-saccular inguinal lymph node during laparoscopic bilateral inguinal hernia repair is extremely rare.

Presentation Of Case: 62-year-old Romanian male presented at the outpatient general surgery clinic in April 2019 complaining of bilateral inguinal swelling that gradually increased in size mainly on right side and was diagnosed with bilateral inguinal hernia. During the laparoscopic repair of the hernia, a large lymph node in the left femoral canal was incidentally observed.

View Article and Find Full Text PDF

A shift in public perception of the health and nutritional benefits of organic supplements and skin care products has led to a surge in high-value products being extracted from microalgae. Traditional forms of microalgae products were proteins, lipids and carbohydrates. However, in recent times the extraction of carotenoids (pigments), polyunsaturated acids (PUFAs), vitamins, phytosterols and polyphenols has increased significantly.

View Article and Find Full Text PDF

SARS-CoV-2 virus mutations might increase its virulence, and thus the severity and duration of the ongoing pandemic. Global drug discovery campaigns have successfully developed several vaccines to reduce the number of infections by the virus. However, finding a small molecule pharmaceutical that is effective in inhibiting SARS-CoV-2 remains a challenge.

View Article and Find Full Text PDF

SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) is a novel coronavirus strain that emerged at the end of 2019, causing millions of deaths so far. Despite enormous efforts being made through various drug discovery campaigns, there is still a desperate need for treatments with high efficacy and selectivity. Recently, marine sulfated polysaccharides (MSPs) have earned significant attention and are widely examined against many viral infections.

View Article and Find Full Text PDF

In this contribution, we have designed and synthesized a novel carbazole-1,3,4-oxadiazole based bipolar fluorophore (E)-2-(4-(4-(9H-carbazol-9-yl)styryl)phenyl)-5-(4-(tertbutyl) phenyl)-1,3,4-oxadiazole (CBZ-OXA-IV). Wittig reaction is utilised for the synthesis of the designed bipolar target compound CBZ-OXA-IV. H NMR, C NMR, FT-IR and ESI-MS results confirmed the designed chemical structure of the fluorophore CBZ-OXA-IV.

View Article and Find Full Text PDF

Global health concern regarding malaria has increased since the first report of artemisinin-resistant Plasmodium falciparum (Pf) two decades ago. The current therapies suffer various drawbacks such as low efficacy and significant side effects, alarming for an urgent need of more effective and less toxic drugs with higher patient compliance. Chemical entities with natural origins become progressively attractive as new drug leads due to their structural diversity and bio-compatibility.

View Article and Find Full Text PDF

Background: Spirooxindoles are privileged scaffolds in medicinal chemistry, which were identified through Wang's pioneering work as inhibitors of MDM2-p53 interactions.

Objective: To design and synthesize 2,6-diarylidenecyclohexanones and dispiro[oxindole-cyclohexanone]- pyrrolidines having potential antitumor effect.

Methods: Dispiro[oxindole-cyclohexanone]-pyrrolidines 6a-h were synthesized in a regioselective manner via 1,3-dipolar cycloaddition reaction of 2,6-diarylidenecyclohexanones 3a-h, isatin, and sarcocine.

View Article and Find Full Text PDF

Microbial co-culture or mixed fermentation proved to be an efficient strategy to expand chemical diversity by the induction of cryptic biosynthetic pathways, and in many cases led to the production of new antimicrobial agents. In the current study, we report a rare example of the induction of silent/cryptic bacterial biosynthetic pathway by the co-culture of Durum wheat plant roots-associated bacterium and date palm leaves-derived fungus . The initial co-culture indicated a clear fungal growth inhibition which was confirmed by the promising antifungal activity of the co-culture total extract against Pc.

View Article and Find Full Text PDF
Article Synopsis
  • The study used small-angle neutron scattering (SANS) to examine zwitterionic dodecyl phosphocholine (C12PC) micelles at different concentrations above their critical micelle concentration (CMC = 0.91 mM), revealing their predominant spherical shape and average size consistent with dynamic light scattering (DLS) results.
  • Cryogenic tunneling electron microscopy (cryo-TEM) showed that the micelles have a uniform structure, indicating they are monodisperse.
  • As the micelle concentration increased, SANS data indicated changes in the core-shell structure, including greater mixing between the core and shell, which was quantified with precise measurements of core radius and shell thickness.
View Article and Find Full Text PDF

Silk fibroin (SF) films were modified with gelatin (G) to explore if such SF/G films could enhance the surface biocompatibility of silk as cell growth biomaterials. Ultrathin films were coated from aqueous SF solutions pre-mixed with different amounts of G. It was found that the SF/G blended films after methanol treatment were highly stable in physiological conditions.

View Article and Find Full Text PDF

Nonionic alkyl ethoxylates (C(n)E(m)) have been extensively studied for their adsorption, aggregation, and solubilization individually and in small groups. In this work, we report a more systematic study of the effects of alkyl chain (tail) and ethoxylate (head) length on the size, shape, and extent of intermixing within the C(n)E(m) micelles in aqueous solution. Data from small angle neutron scattering (SANS) and nuclear magnetic resonance (NMR) were combined to undertake the structural characterization of micelles formed from the two separate series of surfactants C(n)E6 (n = 10, 12, 14) and C12E(m) (m = 5, 6, 8, 10, 12).

View Article and Find Full Text PDF

Development of functional biomaterials and drugs with good biocompatibility towards host cells but with high potency against cancer cells is a challenging endeavor. By drawing upon the advantageous features of natural antimicrobial peptides and α-helical proteins, we have designed a new class of short α-helical peptides G(IIKK)(n)I-NH2 (n = 1-4) with different potency and high selectivity against cancer cells. We show that the peptides with n = 3 and 4 kill cancer cells effectively whilst remaining benign to the host cells at their working concentrations, through mechanistic processes similar to their bactericidal effects.

View Article and Find Full Text PDF