Publications by authors named "Yasaman Chehreghanianzabi"

Designing hydrogels for controlled drug delivery remains a big challenge. We developed a calcium polyphosphate hydrogel (CPP) as matrix for delivery of vancomycin (VCM) and erythromycin (EM) by unique ionic binding and physical wrapping. In this continuing study, we investigated if gel discs prepared by mechanical compaction (at 3000 psi pressure, C-discs) is superior to that of discs prepared by regular manual compaction (M-discs) for the release of VCM and EM (10 wt.

View Article and Find Full Text PDF

Calcium polyphosphate (CPP) hydrogel is used to load erythromycin (EM) and vancomycin (VCM) by means of two loading methods: they are either added directly to the formed CPP hydrogel (Gel Mixture method) or mixed with CPP powders, followed by the formation of CPP-antibiotic hydrogel (Powder Mixture method). The release of loaded antibiotics from CPP hydrogel is measured up to 48 hr. Compared to Powder Mixture method, Gel Mixture method significantly reduced the burst release of embedded antibiotics.

View Article and Find Full Text PDF

The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning.

View Article and Find Full Text PDF

There is an immediate need to develop highly predictive in vitro cell-based assays that provide reliable information on cancer drug efficacy and toxicity. Development of biomaterial-based three-dimensional (3D) cell culture models as drug screening platforms has recently gained much scientific interest as 3D cultures of cancer cells have been shown to more adequately mimic the in vivo tumor conditions. Moreover, it has been recognized that the biophysical and biochemical properties of the 3D microenvironment can play key roles in regulating various cancer cell fates, including their response to chemicals.

View Article and Find Full Text PDF