Valley Fever is a respiratory disease caused by inhalation of arthroconidia, a type of spore produced by fungi within the genus Coccidioides spp. which are found in dry, hot ecosystems of the Western Hemisphere. A quantitative microbial risk assessment (QMRA) for the disease has not yet been performed due to a lack of dose-response models and a scarcity of quantitative occurrence data from environmental samples.
View Article and Find Full Text PDFIntroduction: We previously assessed the effect of an onsite sanitation intervention in informal neighbourhoods of urban Maputo, Mozambique on enteric pathogen detection in children after 2 years of follow-up (Maputo Sanitation (MapSan) trial, ClinicalTrials.gov: NCT02362932). We found significant reductions in and prevalence but only among children born after the intervention was delivered.
View Article and Find Full Text PDFIn low-income, urban, informal communities lacking sewerage and solid waste services, onsite sanitation (sludges, aqueous effluent) and child feces are potential sources of human fecal contamination in living environments. Working in informal communities of urban Maputo, Mozambique, we developed a quantitative, stochastic, mass-balance approach to evaluate plausible scenarios of localized contamination that could explain why the soil-transmitted helminth remains endemic despite nearly universal coverage of latrines that sequester most fecal wastes. We used microscopy to enumerate presumptively viable ova in feces, fecal sludges, and soils from compounds (i.
View Article and Find Full Text PDFEnteric viruses, such as poliovirus, are a leading cause of gastroenteritis, which causes 2-3 million deaths annually. Environmental surveillance of wastewater supplements clinical surveillance for monitoring enteric virus circulation. However, while many environmental surveillance methods require liquid samples, some at-risk locations utilize pit latrines with waste characterized by high solids content.
View Article and Find Full Text PDFUltraviolet (UV) devices emitting UVC irradiation (200-280 nm) have proven to be effective for virus disinfection, especially on surfaces and in air, due to their rapid effectiveness and limited to no material corrosion. Numerous studies of UV-induced inactivation focused on nonenveloped viruses. Little is known about UVC action on enveloped viruses across UVC wavelengths.
View Article and Find Full Text PDF