Post-synthetic modification of proton-conducting metal-organic frameworks (MOFs) by loading small molecules capable of generating protons into pores is an efficient approach for developing a new type of material with improved ionic conductivity. Herein, the synthesis, characterization and proton conductivity of a novel electroneutral MOF based on palladium(II) -tetrakis(4-(phosphonatophenyl))porphyrinate, IPCE-1Pd, are reported. The exposure of the obtained framework to imidazole by the diffusion vapor method has surprisingly led to its complete crystal-to-crystal MOF-to-HOF transformation, resulting in the formation of a novel hydrogen-bonded organic framework (HOF) IPCE-1Pd_Im, which is the first example of such kind of structural change among all known MOFs.
View Article and Find Full Text PDFA change of orbital state alters the coupling between ions and their surroundings drastically. Orbital excitations are hence key to understand and control interaction of ions. Rare-earth elements with strong magneto-crystalline anisotropy (MCA) are important ingredients for magnetic devices.
View Article and Find Full Text PDFIdentifying the microscopic nature of non-equilibrium energy transfer mechanisms among electronic, spin, and lattice degrees of freedom is central to understanding ultrafast phenomena such as manipulating magnetism on the femtosecond timescale. Here, we use time- and angle-resolved photoemission spectroscopy to go beyond the often-used ensemble-averaged view of non-equilibrium dynamics in terms of quasiparticle temperature evolutions. We show for ferromagnetic Ni that the non-equilibrium electron and spin dynamics display pronounced variations with electron momentum, whereas the magnetic exchange interaction remains isotropic.
View Article and Find Full Text PDFThe use of cation-exchange membranes as electrolytes for lithium metal batteries can prevent the formation of lithium dendrites during extended cycling and guarantee safe battery operation. In our study, the Nafion-212 membrane in lithium form solvated by a mixture of ethylene carbonate and propylene carbonate (EC-PC) was used as an electrolyte in a lithium metal battery with the LiFePO cathode. The Nafion-212-EC-PC electrolyte is electrochemically stable up to 6 V, indicating its suitability for high-energy density batteries.
View Article and Find Full Text PDFResonant absorption of a photon by bound electrons in a solid can promote an electron to another orbital state or transfer it to a neighboring atomic site. Such a transition in a magnetically ordered material could affect the magnetic order. While this process is an obvious road map for optical control of magnetization, experimental demonstration of such a process remains challenging.
View Article and Find Full Text PDFFree-electron lasers provide bright, ultrashort, and monochromatic x-ray pulses, enabling novel spectroscopic measurements not only with femtosecond temporal resolution: The high fluence of their x-ray pulses can also easily enter the regime of the non-linear x-ray-matter interaction. Entering this regime necessitates a rigorous analysis and reliable prediction of the relevant non-linear processes for future experiment designs. Here, we show non-linear changes in the -edge absorption of metallic nickel thin films, measured with fluences up to 60 J/cm.
View Article and Find Full Text PDFPolymer ion-exchange membranes are featured in a variety of modern technologies including separation, concentration and purification of gases and liquids, chemical and electrochemical synthesis, and hydrogen power generation. In addition to transport properties, the strength, elasticity, and chemical stability of such materials are important characteristics for practical applications. Perfluorosulfonic acid (PFSA) membranes are characterized by an optimal combination of these properties.
View Article and Find Full Text PDFThe development of accessible express methods to determine markers of viral diseases in saliva is currently an actual problem. Novel cross-sensitive sensors based on Donnan potential with bio-comparable perfluorosulfonic acid membranes for the determination of salivary viral markers (-acetyl--methionine, -carnitine, and -lysine) were proposed. Membranes were formed by casting from dispersions of Nafion or Aquivion in -methyl-2-pyrollidone or in a mixture of isopropyl alcohol and water.
View Article and Find Full Text PDFStudies have been carried out to optimize the composition, formation technique and test conditions of membrane electrode assemblies (MEA) of hydrogen-oxygen anion-exchange membranes fuel cells (AEMFC), based on Fumatech anion-exchange membranes. A non-platinum catalytic system based on nitrogen-doped CNT (CNT) was used in the cathode. PtMo/CNT catalysts with a reduced content of platinum (10-12 wt.
View Article and Find Full Text PDFThe possibility of targeted change of the properties of ion exchange membranes by incorporation of various nanoparticles into the membranes is attracting the attention of many research groups. Here we studied for the first time the influence of cerium phosphate nanoparticles on the physicochemical and transport properties of commercial anion exchange membranes based on quaternary ammonium-functionalized polystyrenes, such as heterogeneous Ralex AM and pseudo-homogeneous Neosepta AMX. The incorporation of cerium phosphate on one side of the membrane was performed by precipitation from absorbed cerium ammonium nitrate (CAN) anionic complex with ammonium dihydrogen phosphate or phosphoric acid.
View Article and Find Full Text PDFThe degradation of drugs is a substantial problem since it affects the safety and effectiveness of pharmaceutical products, as well as their influence on the environment. A novel system of three potentiometric cross-sensitive sensors (using the Donnan potential (DP) as an analytical signal) and a reference electrode was developed for the analysis of UV-degraded sulfacetamide drugs. The membranes for DP-sensors were prepared by a casting procedure from a dispersion of perfluorosulfonic acid (PFSA) polymer, containing carbon nanotubes (CNTs), whose surface was preliminarily modified with carboxyl, sulfonic acid, or (3-aminopropyl)trimethoxysilanol groups.
View Article and Find Full Text PDFHydrogen-bonded organic frameworks (HOFs) possessing high crystallinity, simple synthetic procedure and easy regeneration provide high efficiency as multifunctional systems, including applications as proton conductors. Porphyrinylphosphonates having acidic moieties, which can form multiple hydrogen bonds, together with tunable physical-chemical properties of a macrocycle may significantly improve the proton conductivity of such materials. Herein, the synthesis, characterization and proton-conducting properties of a novel anionic HOF based on a new complex of palladium(II) with -tetrakis(4-(phosphonatophenyl))porphyrin, HOF-IPCE-1Pd, are reported.
View Article and Find Full Text PDFA novel potentiometric multisensory system for the analysis of sulfamethoxazole and trimethoprim combination drugs was developed. The potentiometric sensors (Donnan potential (DP) was used as an analytical signal) with an inner reference solution were based on perfluorosulfonic acid (PFSA) membranes modified with polyaniline (PANI) by in situ oxidative polymerization. The order of the membrane treatment with precursor solutions and their concentrations was varied.
View Article and Find Full Text PDFFemtosecond transient soft X-ray absorption spectroscopy (XAS) is a very promising technique that can be employed at X-ray free-electron lasers (FELs) to investigate out-of-equilibrium dynamics for material and energy research. Here, a dedicated setup for soft X-rays available at the Spectroscopy and Coherent Scattering (SCS) instrument at the European X-ray Free-Electron Laser (European XFEL) is presented. It consists of a beam-splitting off-axis zone plate (BOZ) used in transmission to create three copies of the incoming beam, which are used to measure the transmitted intensity through the excited and unexcited sample, as well as to monitor the incoming intensity.
View Article and Find Full Text PDFIon exchange membranes are widely used for water treatment and ion separation by electrodialysis. One of the ways to increase the efficiency of industrial membranes is their modification with various dopants. To improve the membrane permselectivity, a simple strategy of the membrane surface modification was proposed.
View Article and Find Full Text PDFNafion is a perfluorosulfonic acid polymer that is most commonly used in proton-exchange membrane fuel cells. The processes of pretreatment and formation of such membranes strongly affect their properties. In this work, dispersions of Nafion in various ionic forms and dispersing liquids (ethylene glycol, -dimethylformamide, -methyl-2-pyrrolidone and isopropyl alcohol-water mixtures in different ratios) were obtained and studied.
View Article and Find Full Text PDFPerfluorosulfonic acid Nafion membranes are widely used as an electrolyte in electrolysis processes and in fuel cells. Changing the preparation and pretreatment conditions of Nafion membranes allows for the optimization of their properties. In this work, a Nafion-NMP membrane with a higher conductivity than the commercial Nafion 212 membrane (11.
View Article and Find Full Text PDFSulfamethoxazole and trimethoprim are synthetic bacteriostatic drugs. A potentiometric multisensory system for the analysis of sulfamethoxazole and trimethoprim combination drugs was developed. Perfluorosulfonic acid membranes containing functionalized CNTs were used as the sensor materials.
View Article and Find Full Text PDFPolybenzimidazoles (PBI) doped with phosphoric acid (PA) are promising electrolytes for medium temperature fuel cells. Their significant disadvantage is a partial or complete loss of mechanical properties and an increase in hydrogen permeability at elevated temperatures. Covalent silanol crosslinking is one possible way to stabilize PBI membranes in the presence of PA.
View Article and Find Full Text PDFThe advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, results from the first megahertz-repetition-rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL are presented.
View Article and Find Full Text PDFA real-time and accurate characterization of the X-ray beam size is essential to enable a large variety of different experiments at free-electron laser facilities. Typically, ablative imprints are employed to determine shape and size of µm-focused X-ray beams. The high accuracy of this state-of-the-art method comes at the expense of the time required to perform an ex-situ image analysis.
View Article and Find Full Text PDFProton-exchange membranes based on gamma-irradiated films of PVDF and radiation-grafted sulfonated polystyrene with an ion-exchange capacity of 1.8 meq/g and crosslinking degrees of 0 and 3% were synthesized. A solvent-free, environmentally friendly method of styrene grafting from its aqueous emulsion, with a styrene content of only 5 vol.
View Article and Find Full Text PDFJ Synchrotron Radiat
September 2022
The SASE3 soft X-ray beamline at the European XFEL has been designed and built to provide experiments with a pink or monochromatic beam in the photon energy range 250-3000 eV. Here, the focus is monochromatic operation of the SASE3 beamline, and the design and performance of the SASE3 grating monochromator are reported. The unique capability of a free-electron laser source to produce short femtosecond pulses of a high degree of coherence challenges the monochromator design by demanding control of both photon energy and temporal resolution.
View Article and Find Full Text PDFThe degradation of sulfacetamide with the formation of sulfanilamide leads to a deterioration in the quality of pharmaceuticals. In this work, potentiometric sensors for the simultaneous determination of sulfanilamide, sulfacetamide and inorganic ions, and for assessing the degradation of pharmaceuticals were developed. A multisensory approach was used for this purpose.
View Article and Find Full Text PDFA novel mixed-valent hybrid chiral and polar compound, FeAsSe(en)(HO), has been synthesized by a single-step solvothermal method. The crystal structure consists of 1D [FeSe] chains connected via [AsSe]-Se pentagonal linkers and charge-balancing interstitial [Fe(en)] complexes ( = ethylenediamine). Neutron powder diffraction verified that interstitial water molecules participate in the crystal packing.
View Article and Find Full Text PDF