Publications by authors named "Yaroslav V Kudryavtsev"

A method is proposed for the theoretical assessment of potential membrane properties in materials based on microphase-separated block copolymer films subjected to the etching of one of the components. The concepts of topological permeability and connectivity contrast introduced by the authors are used to compare the percolation characteristics of simple cubic, diamond, and diamond-like morphologies compatible with the slit geometry and specified by a given distribution of the order parameter. The diamond-like morphology, which has the most promising transport characteristics, can be formed in a thin film of diblock copolymer AB placed on a chemically structured substrate.

View Article and Find Full Text PDF

Fluorinated polymers are attractive due to their special thermal, surface, gas separation, and other properties. In this study, new diblock, multiblock, and random copolymers of cyclooctene with two fluorinated norbornenes, 5-perfluorobutyl-2-norbornene and N-pentafluorophenyl-exo-endo-norbornene-5,6-dicarboximide, are synthesized by ring-opening metathesis copolymerization and macromolecular cross-metathesis in the presence of the first- to third-generation Grubbs' Ru-catalysts. Their thermal, surface, bulk, and solution characteristics are investigated and compared using differential scanning calorimetry, water contact angle measurements, gas permeation, and light scattering, respectively.

View Article and Find Full Text PDF

An experimental quasi-equilibrium phase diagram of the polyvinylidene fluoride (PVDF)-camphor mixture is constructed using an original optical method. For the first time, it contains a boundary curve that describes the dependence of camphor solubility in the amorphous regions of PVDF on temperature. It is argued that this diagram cannot be considered a full analogue of the eutectic phase diagrams of two low-molar-mass crystalline substances.

View Article and Find Full Text PDF

The parallel development of reversible deactivation radical polymerization and click reaction concepts significantly enriches the toolbox of synthetic polymer chemistry. The synergistic effect of combining these approaches manifests itself in a growth of interest to the design of well-defined functional polymers and their controlled conjugation with biomolecules, drugs, and inorganic surfaces. In this review, we discuss the results obtained with reversible addition-fragmentation chain transfer (RAFT) polymerization and different types of click reactions on low- and high-molar-mass reactants.

View Article and Find Full Text PDF

Commercial metathesis polynorbornene is used for the fabrication of high-damping coatings and bulk materials that dissipate vibration and impact energies. Functionalization of this non-polar polymer can improve its adhesive, gas barrier, and other properties, thereby potentially expanding its application area. With this aim, the post-modification of polynorbornene was carried out by inserting ethylene-vinyl acetate-vinyl alcohol blocks into its backbone via the cross-metathesis of polynorbornene with poly(5-acetoxy-1-octenylene) and subsequent deacetylation and hydrogenation of the obtained multiblock copolymers.

View Article and Find Full Text PDF

Morphological transition between hexagonal and lamellar patterns in thin polystyrene--poly(4-vinyl pyridine) films simultaneously exposed to a strong in-plane electric field and saturated solvent vapor is studied with atomic force and scanning electron microscopy. In these conditions, standing cylinders made of 4-vinyl pyridine blocks arrange into threads up to tens of microns long along the field direction and then partially merge into standing lamellas. In the course of rearrangement, the copolymer remains strongly segregated, with the minor component domains keeping connectivity between the film surfaces.

View Article and Find Full Text PDF

A molecular model of the orientationally ordered lamellar phase exhibited by asymmetric rod-coil-rod triblock copolymers has been developed using the density-functional approach and generalizing the molecular-statistical theory of rod-coil diblock copolymers. An approximate expression for the free energy of the lamellar phase has been obtained in terms of the direct correlation functions of the system, the Flory-Huggins parameter and the Maier-Saupe orientational interaction potential between rods. A detailed derivation of several rod-rod and rod-coil density-density correlation functions required to evaluate the free energy is presented.

View Article and Find Full Text PDF

We investigate the structure-property relations of the multiblock copolymers of norbornene with cyclododecene synthesized via the macromolecular cross-metathesis reaction between amorphous polynorbornene and semicrystalline polydodecenamer in the presence of the first-generation Grubbs catalyst. By adjusting the reaction time, catalyst amount, and composition of the initial system, we obtain a set of statistical multiblock copolymers that differ in the composition and average length of norbornene and dodecenylene unit sequences. Structural, thermal, and mechanical characterization of the copolymers with NMR, XRD, DSC (including thermal fractionation by successive self-nucleation and annealing), and rotational rheology allows us to relate the reaction conditions to the average length of crystallizable unit sequences, thicknesses of corresponding lamellas, and temperatures of their melting.

View Article and Find Full Text PDF

An experimental phase diagram of the isotactic polypropylene-camphor system is constructed using an original optical method. It considerably deviates from the dynamic diagram, which can be obtained using conventional differential scanning calorimetry (DSC), and contains an additional boundary line that describes camphor solubility in the polymer. An accurate phase diagram makes it possible to perform a detailed and consistent thermodynamic analysis of the DSC, optical, and scanning electron microscopy data on the cooling of prehomogenized mixtures of different compositions, which leads to the formation of capillary-porous bodies via thermally induced phase separation.

View Article and Find Full Text PDF

Multiblock copolymers constitute a basis for an emerging class of nanomaterials that combine various functional properties with durability and enhanced mechanical characteristics. Our mini-review addresses synthetic approaches to the design of multiblock copolymers from unsaturated monomers and polymers using olefin metathesis reactions and other ways of chemical modification across double C=C bonds. The main techniques, actively developed during the last decade and discussed here, are the coupling of end-functionalized blocks, sequential ring-opening metathesis polymerization, and cross metathesis between unsaturated polymers, or macromolecular cross metathesis.

View Article and Find Full Text PDF

A fast route to transfer Au nanoparticles from aqueous to organic media is proposed based on the use of a high molecular mass diblock copolymer of styrene and 2-vinylpyridine for ligand exchange at the nanoparticle surface. The method enables the preparation of stable sols of Au nanorods with sizes of up to tens of nanometers or Au nanospheres in various organic solvents. By comparing the optical absorbance spectra of Au hydro- and organosols with the data of numerical simulations of the surface plasmon resonance, we find that nanoparticles do not aggregate and confirm the transmission electron microscopy data regarding their shape and size.

View Article and Find Full Text PDF

Local distribution and orientation of anisotropic nanoparticles in microphase-separated symmetric diblock copolymers has been simulated using dissipative particle dynamics and analyzed with a molecular theory. It has been demonstrated that nanoparticles are characterized by a non-trivial orientational ordering in the lamellar phase due to their anisotropic interactions with isotropic monomer units. In the simulations, the maximum concentration and degree of ordering are attained for non-selective nanorods near the domain boundary.

View Article and Find Full Text PDF

The cross-metathesis of polynorbornene and polyoctenamer in d-chloroform mediated by the 1(st) generation Grubbs' catalyst Cl2(PCy3)2Ru=CHPh is studied by monitoring the kinetics of carbene transformation and evolution of the dyad composition of polymer chains with in situ (1)H and ex situ (13)C NMR spectroscopy. The results are interpreted in terms of a simple kinetic two-stage model. At the first stage of the reaction all Ru-benzylidene carbenes are transformed into Ru-polyoctenamers within an hour, while the polymer molar mass is considerably decreased.

View Article and Find Full Text PDF

Interfacial polymerization of tri- and bifunctional monomers (A3B2 polymerization) is investigated by dissipative particle dynamics to reveal an effect of cross-linking on the reaction kinetics and structure of the growing polymer film. Regardless of the comonomer reactivity and miscibility, the kinetics in an initially bilayer melt passes from the reaction to diffusion control. Within the crossover period, branched macromolecules undergo gelation, which drastically changes the scenario of the polymerization process.

View Article and Find Full Text PDF

Step-growth alternating interfacial polymerization between two miscible or immiscible monomer melts is investigated theoretically and by dissipative particle dynamics simulations. In both cases the kinetics for an initially bilayer system passes from the reaction to diffusion control. The polymer composed of immiscible monomers precipitates at the interface forming a film of nearly uniform density.

View Article and Find Full Text PDF

Phase diagrams for monodisperse and polydisperse diblock copolymer melts and a random multiblock copolymer melt are constructed using dissipative particle dynamics simulations. A thorough visual analysis and calculation of the static structure factor in several hundreds of points at each of the diagrams prove the ability of mesoscopic molecular dynamics to predict the phase behavior of polymer systems as effectively as the self-consistent field-theory and Monte Carlo simulations do. It is demonstrated that the order-disorder transition (ODT) curve for monodisperse diblocks can be precisely located by a spike in the dependence of the mean square pressure fluctuation on χN, where χ is the Flory-Huggins parameter and N is the chain length.

View Article and Find Full Text PDF

A novel hybrid approach combining dissipative particle dynamics (DPD) and finite difference (FD) solution of partial differential equations is proposed to simulate complex reaction-diffusion phenomena in heterogeneous systems. DPD is used for the detailed molecular modeling of mass transfer, chemical reactions, and phase separation near the liquid∕liquid interface, while FD approach is applied to describe the large-scale diffusion of reactants outside the reaction zone. A smooth, self-consistent procedure of matching the solute concentration is performed in the buffer region between the DPD and FD domains.

View Article and Find Full Text PDF

The influence of polydispersity on the interfacial kinetics of end-coupling and microstructure formation in the melt of immiscible polymers was studied using dissipative particle dynamics simulations. The irreversible reaction started at a flat interface between two layers, each of which contained polymer chains of two different lengths with functionalized or unreactive end groups. As in the case of fully functionalized monodisperse reactants [A.

View Article and Find Full Text PDF