Stochastic epigenetic mutations (SEMs) have been proposed as novel aging biomarkers to capture heterogeneity in age-related DNA methylation changes. SEMs are defined as outlier methylation patterns at cytosine-guanine dinucleotide sites, categorized as hypermethylated (hyperSEM) or hypomethylated (hypoSEM) relative to a reference. Because SEMs are defined by their outlier status, it is critical to differentiate extreme values due to technical noise or data artifacts from those due to real biology.
View Article and Find Full Text PDFStochastic Epigenetic Mutations (SEMs) have been proposed as novel aging biomarkers that have the potential to capture heterogeneity in age-related DNA methylation (DNAme) changes. SEMs are defined as outlier methylation patterns at cytosine-guanine dinucleotide (CpG) sites, categorized as hypermethylated (hyperSEM) or hypomethylated (hypoSEM) relative to a reference. While individual SEMs are rarely consistent across subjects, the SEM load - the total number of SEMs - increases with age.
View Article and Find Full Text PDFIndividuals, organs, tissues, and cells age in diverse ways throughout the lifespan. Epigenetic clocks attempt to quantify differential aging between individuals, but they typically summarize aging as a single measure, ignoring within-person heterogeneity. Our aim was to develop novel systems-based methylation clocks that, when assessed in blood, capture aging in distinct physiological systems.
View Article and Find Full Text PDFHere, we present the data of human histone interactomes generated and analysed in the research article by Peng et al., 2020 [1]. The histone interactome data provide a comprehensive mapping of human histone/nucleosome interaction networks by using different data sources from the structural, chemical cross-linking, and high-throughput studies.
View Article and Find Full Text PDFTo elucidate the properties of human histone interactions on the large scale, we perform a comprehensive mapping of human histone interaction networks by using data from structural, chemical cross-linking and various high-throughput studies. Histone interactomes derived from different data sources show limited overlap and complement each other. It inspires us to integrate these data into the combined histone global interaction network which includes 5308 proteins and 10,330 interactions.
View Article and Find Full Text PDFNucleosomes represent the elementary units of chromatin packing and hubs in epigenetic signaling pathways. Across the chromatin and over the lifetime of the eukaryotic cell, nucleosomes experience a broad repertoire of alterations that affect their structure and binding with various chromatin factors. Dynamics of the histone core, nucleosomal and linker DNA, and intrinsic disorder of histone tails add further complexity to the nucleosome interaction landscape.
View Article and Find Full Text PDF