Publications by authors named "Yaroslav Klichko"

Aluminum aminoterephthalate MOF particulate materials (NH(2)-MIL-101(Al) and NH(2)-MIL-53(Al)), studied here as components of self-detoxifying surfaces, retained their reactivity following their covalent attachment to protective surfaces utilizing a newly developed strategy in which the MOF particles were deposited on a reactive adhesive composed of polyisobutylene/toluene diisocyanate (PIB/TDI) blends. Following MOF attachment and curing, the MOF primary amino groups were functionalized with highly nucleophilic 4-methylaminopyridine (4-MAP) by disuccinimidyl suberate-activated conjugation. The resulting MOF-4-MAP modified PIB/TDI elastomeric films were mechanically flexible and capable of degrading diisopropyl fluorophosphate (DFP), a chemical threat simulant.

View Article and Find Full Text PDF

Treatment of a bis(phenylphosphonite)calix[5]arene ligand with either palladium(II) chloride or 1,5-cyclooctadieneplatinum(II) chloride yields square planar metal complexes in which the two phosphorus atoms bind cis to the MCl(2) moiety (M = Pd, Pt). Chloride was removed from the palladium complex to open a coordination site at the metal for catalysis. The chloride removal resulted in a rare and unexpected η(6) coordination of an arene to the metal.

View Article and Find Full Text PDF

Silica thin films and nanoparticles prepared using sol-gel chemistry are derivatized with active molecules to generate new functional materials. The mild conditions associated with sol-gel processing allow for the incorporation of a range of dopants including organic or inorganic dyes, biomolecules, surfactants, and molecular machines. Silica nanoparticles embedded with inorganic nanocrystals, and films containing living cells have also been synthesized.

View Article and Find Full Text PDF

New calix[5]arene trivalent phosphorus derivatives have been synthesized which should be excellent ligands with which to study and control the interaction of a ligand atom with a metal. The larger cavity of the calix[5]arene (compared to calix[4]arene) provides a good balance between constraint and flexibility. Treatment of p-tert-butylcalix[5]arene with 2 equiv of either tris(dimethylamino)phosphine or dichlorophenylphosphine inserts two RP moieties into the calix[5]arene framework to give calix[5](PR)2(OH) (1, R = Me2N; 2, R = Ph).

View Article and Find Full Text PDF