Concise total syntheses of several 5/7/6 norcembranoids, including ineleganolide, scabrolide B, sinuscalide C, and fragilolide A have been achieved through a fragment coupling/ring closure approach. The central seven-membered ring was forged through sequential Mukaiyama-Michael/aldol reactions using norcarvone and a decorated bicyclic lactone incorporating a latent electrophile. Subsequent manipulations installed the reactive enedione motif and delivered scabrolide B in 11 steps from a chiral pool-derived enone.
View Article and Find Full Text PDFThe concise total syntheses of oxidized norcembranoid terpenoids (-)-scabrolide A and (-)-yonarolide have been accomplished in 10 and 11 steps, respectively. The carbocyclic skeleton was efficiently constructed from two chiral-pool-derived fragments, including a [5,5]-bicyclic lactone accessed through a powerful Ni-catalyzed pentannulation of functionalized cyclopentenone with methylenecyclopropane and subsequent fragmentation. Additional features included a Liebeskind-Srogl coupling, induction of a cyclization/elimination cascade by a zinc-amido base, and installation of a sensitive enedione motif by late-stage γ-oxidation.
View Article and Find Full Text PDFThe reaction of cyclic nitronic esters (isoxazoline- and 5,6-dihydro-4-1,2-oxazine--oxides) with hydrochloric acid affords geminal chloronitroso compounds bearing a distant hydroxyl group. The reaction is usually diastereoselective, and in some cases stereodivergent formation of isomers at different temperatures is observed. The discovered process represents the first example of an interrupted Nef reaction of nitronic esters.
View Article and Find Full Text PDFCorrection for 'Dearomative logic in natural product total synthesis' by Christopher J. Huck , , 2022, https://doi.org/10.
View Article and Find Full Text PDFCovering: 2011 to 2022The natural world is a prolific source of some of the most interesting, rare, and complex molecules known, harnessing sophisticated biosynthetic machinery evolved over billions of years for their production. Many of these natural products represent high-value targets of total synthesis, either for their desirable biological activities or for their beautiful structures outright; yet, the high sp-character often present in nature's molecules imparts significant topological complexity that pushes the limits of contemporary synthetic technology. Dearomatization is a foundational strategy for generating such intricacy from simple materials that has undergone considerable maturation in recent years.
View Article and Find Full Text PDFMarine ecosystems present the largest source of biodiversity on the planet and an immense reservoir of novel chemical entities. Sessile marine organisms such as sponges produce a wide range of complex secondary metabolites, many of these with potent biological activity engineered for chemical defense. That such compounds exert dynamic effects outside of their native context is perhaps not surprising, and the realm of marine natural products has attracted considerable attention as a largely untapped repository of potential candidates for drug development.
View Article and Find Full Text PDFThe isomalabaricanes comprise a large family of marine triterpenoids with fascinating structures that have been shown to be selective and potent apoptosis inducers in certain cancer cell lines. In this article, we describe the successful total syntheses of the isomalabaricanes stelletin A, stelletin E, and rhabdastrellic acid A, as well as the development of a general strategy to access other natural products within this unique family. High-throughput experimentation and computational chemistry methods were used in this endeavor.
View Article and Find Full Text PDFThe first total syntheses of (±)-rhabdastrellic acid A and (±)-stelletin E, highly cytotoxic isomalabaricane triterpenoids, have been accomplished in a linear sequence of 14 steps from commercial geranylacetone. The exceptionally strained perhydrobenz[]indene core characteristic of the isomalabaricanes is efficiently accessed in a selective manner through a rapid, complexity-generating sequence. This process features a reductive radical polyene cyclization, an unprecedented oxidative Rautenstrauch cycloisomerization, and umpolung α-substitution of a -toluenesulfonylhydrazone with reductive transposition.
View Article and Find Full Text PDFDespite of their chemical instability and high reactivity, conjugated nitrosoalkenes are useful intermediates in target-oriented organic synthesis. The present review deals with carbon-carbon bond forming reactions involving Michael addition to α-nitrosoalkenes with a particular focus on recent developments in this methodology and its use in total synthesis.
View Article and Find Full Text PDFThe aluminum(I) compound NacNacAl (1) reacts with diphenyl disulfide and diethyl sulfide to form the respective four-coordinate bis(phenyl sulfide) complex NacNacAl(SPh)2 (2) and alkyl thiolate aluminum complex NacNacAlEt(SEt) (3). As well, reaction of 1 with tetraphenyl diphosphine furnishes the bis(diphenyl phosphido) complex NacNacAl(PPh2)2 (4). Production of 3 and 4 are the first examples of C(sp(3))-S and R2P-PR2 activation by a main-group element complex.
View Article and Find Full Text PDFAn investigation of the model of porous silicon in the form of periodic set of silicon nanowires has been carried out. The electronic energy structure was studied using a first-principle band method-the method of pseudopotentials (ultrasoft potentials in the basis of plane waves) and linearized mode of the method of combined pseudopotentials. Due to the use of hybrid exchange-correlation potentials (B3LYP), the quantitative agreement of the calculated value of band gap in the bulk material with experimental data is achieved.
View Article and Find Full Text PDFSimple three-step asymmetric and racemic syntheses of GlaxoSmithKline's highly potent PDE IVb inhibitor 1 were developed. The suggested approach is based on reductive domino transformations of 3-β-carbomethoxyethyl-substituted six-membered cyclic nitronates, which are easily accessed by a stereoselective [4 + 2] cycloaddition of an appropriate nitroalkene to vinyl ethers. In vitro studies of PDE IVb inhibition by enantiomeric pyrrolizidinones (+)-1 and (-)-1 were performed.
View Article and Find Full Text PDFAsymmetric synthesis of GlaxoSmithKline's highly potent phosphodiesterase inhibitor 1 has been accomplished in nine steps and 16% overall yield. The original strategy suggested involves as a key step the silylation of enantiopure six-membered cyclic nitronates 4 obtained by a highly stereoselective [4 + 2]-cycloaddition of an appropriate nitroalkene 5 to trans-1-phenyl-2-(vinyloxy)cyclohexane. Functionalization of the resulting 5,6-dihydro-4H-1,2-oxazine and subsequent stereoselective reduction of 1,2-oxazine ring in intermediate 2 furnished the pyrrolizidinone framework with the recovery of chiral auxiliary alcohol.
View Article and Find Full Text PDF