Publications by authors named "Yaron Mazor"

Non-coding RNA (ncRNA) genes assume increasing biological importance, with growing associations with diseases. Many ncRNA sources are transcript-centric, but for non-coding variant analysis and disease decipherment it is essential to transform this information into a comprehensive set of genome-mapped ncRNA genes. We present GeneCaRNA, a new all-inclusive gene-centric ncRNA database within the GeneCards Suite.

View Article and Find Full Text PDF
Article Synopsis
  • The clinical genetics revolution is transforming how genomes are analyzed to identify important genetic variations linked to patient symptoms, but it also presents challenges in interpreting non-coding variants.
  • TGex is an innovative platform that specializes in genome variation analysis, with advanced capabilities for exome analysis and a unique approach to non-coding variant interpretation.
  • Its strengths include a powerful variant filtering system, extensive data resources through VarElect and GeneCards, a user-friendly interface, ACMG compliance, and impressive diagnostic results, demonstrating high yields in identifying actionable genetic information for rare diseases.
View Article and Find Full Text PDF

Background: Next generation sequencing (NGS) provides a key technology for deciphering the genetic underpinnings of human diseases. Typical NGS analyses of a patient depict tens of thousands non-reference coding variants, but only one or very few are expected to be significant for the relevant disorder. In a filtering stage, one employs family segregation, rarity in the population, predicted protein impact and evolutionary conservation as a means for shortening the variation list.

View Article and Find Full Text PDF

GeneCards, the human gene compendium, enables researchers to effectively navigate and inter-relate the wide universe of human genes, diseases, variants, proteins, cells, and biological pathways. Our recently launched Version 4 has a revamped infrastructure facilitating faster data updates, better-targeted data queries, and friendlier user experience. It also provides a stronger foundation for the GeneCards suite of companion databases and analysis tools.

View Article and Find Full Text PDF

Postgenomics data are produced in large volumes by life sciences and clinical applications of novel omics diagnostics and therapeutics for precision medicine. To move from "data-to-knowledge-to-innovation," a crucial missing step in the current era is, however, our limited understanding of biological and clinical contexts associated with data. Prominent among the emerging remedies to this challenge are the gene set enrichment tools.

View Article and Find Full Text PDF

Cell therapies aim to repair the mechanisms underlying disease initiation and progression, achieved through trophic effect or by cell replacement. Multiple cell types can be utilized in such therapies, including stem, progenitor or primary cells. This review covers the current state of cell therapies designed for the prominent disorders, including cardiovascular, neurological (Parkinson's disease, amyotrophic lateral sclerosis, stroke, spinal cord injury), autoimmune (Type 1 diabetes, multiple sclerosis, Crohn's disease), ophthalmologic, renal, liver and skeletal (osteoarthritis) diseases.

View Article and Find Full Text PDF

LifeMap Discovery™ provides investigators with an integrated database of embryonic development, stem cell biology and regenerative medicine. The hand-curated reconstruction of cell ontology with stem cell biology; including molecular, cellular, anatomical and disease-related information, provides efficient and easy-to-use, searchable research tools. The database collates in vivo and in vitro gene expression and guides translation from in vitro data to the clinical utility, and thus can be utilized as a powerful tool for research and discovery in stem cell biology, developmental biology, disease mechanisms and therapeutic discovery.

View Article and Find Full Text PDF