Publications by authors named "Yaron Marciano"

Matrix metalloproteinases (MMP) are enzymes that degrade the extracellular matrix and regulate essential normal cell behaviors. Inhibition of these enzymes has been a strategy for anti-cancer therapy since the 1990s, but with limited success. A new type of MMP-targeting strategy exploits the innate selective hydrolytic activity and consequent catalytic signal amplification of the proteinases, rather than inhibiting it.

View Article and Find Full Text PDF

Peptide materials are promising for various biomedical applications; however, a significant concern is their lack of stability and rapid degradation due to non-specific proteolysis. For materials specifically designed to respond to disease-specific proteases, it would be desirable to retain high susceptibility to target proteases while minimizing the impact of non-specific proteolysis. We describe N-terminal acetylation as a simple synthetic modification of amphiphilic self-assembling peptides that contain an MMP-9-cleavable segment and form soluble, nanoscale filaments.

View Article and Find Full Text PDF

We investigated the use of amphiphilic, protease-cleavable peptides as encapsulation moieties for hydrophobic metallodrugs, in order to enhance their bioavailability and consequent activity. Two hydrophobic, gold-containing anticancer agents varying in aromatic ligand distribution (Au(I)-N-heterocyclic carbene compounds and ) were investigated. These were encapsulated into amphiphilic decapeptides that form soluble filamentous structures with hydrophobic cores, varying supramolecular packing arrangements and surface charge.

View Article and Find Full Text PDF