Algorithms Mol Biol
February 2015
Background: Constraint-based modeling of genome-scale metabolic network reconstructions has become a widely used approach in computational biology. Flux coupling analysis is a constraint-based method that analyses the impact of single reaction knockouts on other reactions in the network.
Results: We present an extension of flux coupling analysis for double and multiple gene or reaction knockouts, and develop corresponding algorithms for an in silico simulation.
Flux coupling analysis (FCA) has become a useful tool for aiding metabolic reconstructions and guiding genetic manipulations. Originally, it was introduced for constraint-based models of metabolic networks that are based on the steady-state assumption. Recently, we have shown that the steady-state assumption can be replaced by a weaker lattice-theoretic property related to the supports of metabolic fluxes.
View Article and Find Full Text PDF