Publications by authors named "Yaron Antebi"

Flow cytometry enables quantitative measurements of fluorescence in single cells. The technique was widely used for immunology to identify populations with different surface protein markers. More recently, the usage of flow cytometry has been extended to additional readouts, including intracellular proteins and fluorescent protein transgenes, and is widely utilized to study developmental biology, systems biology, microbiology, and many other fields.

View Article and Find Full Text PDF

Flow cytometry enables quantitative measurements of fluorescence in single cells. The technique was widely used for immunology to identify populations with different surface protein markers. More recently, the usage of flow cytometry has been extended to additional readouts, including intracellular proteins and fluorescent protein transgenes, and is widely utilized to study development, systems biology, microbiology, and many other fields.

View Article and Find Full Text PDF

Many biological circuits comprise sets of protein variants that interact with one another in a many-to-many, or promiscuous, fashion. These architectures can provide powerful computational capabilities that are especially critical in multicellular organisms. Understanding the principles of biochemical computations in these circuits could allow more precise control of cellular behaviors.

View Article and Find Full Text PDF

Numerous methods have recently emerged for ordering single cells along developmental trajectories. However, accurate depiction of developmental dynamics can only be achieved after rescaling the trajectory according to the relative time spent at each developmental point. We formulate a model which estimates local cell densities and fluxes, and incorporates cell division and apoptosis rates, to infer the real-time dimension of the developmental trajectory.

View Article and Find Full Text PDF

In multicellular organisms, secreted ligands selectively activate, or "address," specific target cell populations to control cell fate decision-making and other processes. Key cell-cell communication pathways use multiple promiscuously interacting ligands and receptors, provoking the question of how addressing specificity can emerge from molecular promiscuity. To investigate this issue, we developed a general mathematical modeling framework based on the bone morphogenetic protein (BMP) pathway architecture.

View Article and Find Full Text PDF

Cell-cell communication systems typically comprise families of ligand and receptor variants that function together in combinations. Pathway activation depends on the complex way in which ligands are presented extracellularly and receptors are expressed by the signal-receiving cell. To understand the combinatorial logic of such a system, we systematically measured pairwise bone morphogenetic protein (BMP) ligand interactions in cells with varying receptor expression.

View Article and Find Full Text PDF

Nascent messenger RNA is endowed with a poly(A) tail that is subject to gradual deadenylation and subsequent degradation in the cytoplasm. Deadenylation and degradation rates are typically correlated, rendering it difficult to dissect the determinants governing each of these processes and the mechanistic basis of their coupling. Here we developed an approach that allows systematic, robust and multiplexed quantification of poly(A) tails in Saccharomyces cerevisiae.

View Article and Find Full Text PDF

Adenosine-to-inosine editing is catalyzed by ADAR1 at thousands of sites transcriptome-wide. Despite intense interest in ADAR1 from physiological, bioengineering, and therapeutic perspectives, the rules of ADAR1 substrate selection are poorly understood. Here, we used large-scale systematic probing of ∼2,000 synthetic constructs to explore the structure and sequence context determining editability.

View Article and Find Full Text PDF

Animal cells use a conserved repertoire of intercellular signaling pathways to communicate with one another. These pathways are well-studied from a molecular point of view. However, we often lack an "operational" understanding that would allow us to use these pathways to rationally control cellular behaviors.

View Article and Find Full Text PDF

The bone morphogenetic protein (BMP) signaling pathway comprises multiple ligands and receptors that interact promiscuously with one another and typically appear in combinations. This feature is often explained in terms of redundancy and regulatory flexibility, but it has remained unclear what signal-processing capabilities it provides. Here, we show that the BMP pathway processes multi-ligand inputs using a specific repertoire of computations, including ratiometric sensing, balance detection, and imbalance detection.

View Article and Find Full Text PDF

As they proliferate, living cells undergo transitions between specific molecularly and developmentally distinct states. Despite the functional centrality of these transitions in multicellular organisms, it has remained challenging to determine which transitions occur and at what rates without perturbations and cell engineering. Here, we introduce kin correlation analysis (KCA) and show that quantitative cell-state transition dynamics can be inferred, without direct observation, from the clustering of cell states on pedigrees (lineage trees).

View Article and Find Full Text PDF

Chromatin regulators play a major role in establishing and maintaining gene expression states. Yet how they control gene expression in single cells, quantitatively and over time, remains unclear. We used time-lapse microscopy to analyze the dynamic effects of four silencers associated with diverse modifications: DNA methylation, histone deacetylation, and histone methylation.

View Article and Find Full Text PDF

A widespread feature of extracellular signaling in cell circuits is paradoxical pleiotropy: the same secreted signaling molecule can induce opposite effects in the responding cells. For example, the cytokine IL-2 can promote proliferation and death of T cells. The role of such paradoxical signaling remains unclear.

View Article and Find Full Text PDF

Cell differentiation is typically directed by external signals that drive opposing regulatory pathways. Studying differentiation under polarizing conditions, with only one input signal provided, is limited in its ability to resolve the logic of interactions between opposing pathways. Dissection of this logic can be facilitated by mapping the system's response to mixtures of input signals, which are expected to occur in vivo, where cells are simultaneously exposed to various signals with potentially opposing effects.

View Article and Find Full Text PDF

Methods that allow monitoring of individual cells over time, using live cell imaging, are essential for studying dynamical cellular processes in heterogeneous cell populations such as primary T lymphocytes. However, applying single cell time-lapse microscopy to study activation and differentiation of these cells was limited due to a number of reasons. First, primary naïve T cells are non-adherent and become highly motile upon activation through their antigen receptor.

View Article and Find Full Text PDF

Background: Extracellular feedback is an abundant module of intercellular communication networks, yet a detailed understanding of its role is still lacking. Here, we study interactions between polyclonal activated T cells that are mediated by IL-2 extracellular feedback as a model system.

Results: Using mathematical modeling we show that extracellular feedback can give rise to opposite outcomes: competition or cooperation between interacting T cells, depending on their relative levels of activation.

View Article and Find Full Text PDF

Biological systems display complex networks of interactions both at the level of molecules inside the cell and at the level of interactions between cells. Networks of interacting molecules, such as transcription networks, have been shown to be composed of recurring circuits called network motifs, each with specific dynamical functions. Much less is known about the possibility of such circuit analysis in networks made of communicating cells.

View Article and Find Full Text PDF

We report a chip-scale lensless wide-field-of-view microscopy imaging technique, subpixel perspective sweeping microscopy, which can render microscopy images of growing or confluent cell cultures autonomously. We demonstrate that this technology can be used to build smart Petri dish platforms, termed ePetri, for cell culture experiments. This technique leverages the recent broad and cheap availability of high performance image sensor chips to provide a low-cost and automated microscopy solution.

View Article and Find Full Text PDF

Cytotoxic T lymphocytes (CTLs) suppress T cell responses directed against their antigens regardless of their own T cell receptor (TCR) specificity. This makes the use of CTLs promising for tolerance induction in autoimmunity and transplantation. It has been established that binding of the CTL CD8 molecule to the major histocompatibility complex (MHC) class I α3 domain of the recognizing T cell must be permitted for death of the latter cell to ensue.

View Article and Find Full Text PDF

Background: Anti third-party cytotoxic T lymphocytes (CTLs) were shown to exhibit marked veto activity, thereby inducing transplantation tolerance across major histocompatibility antigens. Elimination of effector cells requires co-expression of CD8 and FasL on the veto cells and is mediated through CD8-major histocompatibility complex (MHC) class I interaction and Fas-Fas ligand signaling.

Methods: To further interrogate the signaling events induced in the effector cells on their interaction with veto cell populations, effector cells from 2C transgenic mice were preincubated with different signaling inhibitors and were subject to fluorescence-activated cell sorting and western blot analysis.

View Article and Find Full Text PDF