Publications by authors named "Yarasi Soujanya"

CO sorption in physical solvents is one of the promising approaches for carbon capture from highly concentrated CO streams at high pressures. Identifying an efficient solvent and evaluating its solubility data at different operating conditions are highly essential for effective capture, which generally involves expensive and time-consuming experimental procedures. This work presents a machine learning based ultrafast alternative for accurate prediction of CO solubility in physical solvents using their physical, thermodynamic, and structural properties data.

View Article and Find Full Text PDF

Identification and characterization of biproducts/ impurities present in agrochemicals are critical in view of their efficacy and safety towards public health. We herein present our study on identification and characterization of an impurity, 5-chloro-2-cyano-N,N-dimethyl-4-p-tolylimidazole-1-sulfonamide (2) present in the fungicide, "cyazofamid". Intermittent HPLC analysis of the reaction of substituted imidazole (1) with N,N-dimethylsulfamoyl chloride suggested that 2 is formed during the reaction.

View Article and Find Full Text PDF

Current pandemics propelled research efforts in unprecedented fashion, primarily triggering computational efforts towards new vaccine and drug development as well as drug repurposing. There is an urgent need to design novel drugs with targeted biological activity and minimum adverse reactions that may be useful to manage viral outbreaks. Hence an attempt has been made to develop Machine Learning based predictive models that can be used to assess whether a compound has the potency to be antiviral or not.

View Article and Find Full Text PDF

In an effort to replace the widely used ruthenium metal complexes with low-cost, earth abundant iron complexes as photosensitizers for dye-sensitized solar cell (DSSC) applications, herein we report the computational design of heteroleptic iron complexes (FC1-3) coordinated with benzimidazole-phenylcarbene (C^N) ligands. DFT and TDDFT calculations predicted the stronger σ-donating and π-accepting nature of phenyl carbene ligands substituted with electron-withdrawing CF, donating -N(CH), and benzothiazine annulation than the imidazole carbene ligands (FC4); consequently, the metal-ligand bond distances and interactions that influence the ordering of charge transfer states with respect to metal centered states are altered in FC1-3 complexes. Detailed analysis based on energy decomposition analysis, spin density distribution analysis, and ab initio ligand field theory parameters were enabled to understand the nature of heteroleptic ligand interactions with the rest of the metal complex.

View Article and Find Full Text PDF

The current study reports the one-step synthesis and gelation properties of cyclohexane-based bis(acyl-semicarbazide) gelators with an additional -NH group incorporated into urea moieties and carrying hydrophobic chains of varying length (C8-C18). The gels exhibited thermoreversibility and could be tuned in the presence of anions at different concentrations in addition their the ultrasound-responsive nature, thus making them multi-stimuli-responsive. The combined experimental and computational study on these gels reveals that the balance between two noncovalent interactions, viz.

View Article and Find Full Text PDF

We have designed and synthesized heteroleptic Ru(ii) complexes with a pyridine-benzimidazole ligand (PYBI) for dye-sensitized solar cell (DSSC) applications. The PYBI ligand has major advantages by having the flexibility to introduce appropriate substituents at the four readily available positions through molecular engineering () compared to other ancillary bipyridyl-based ligands. We have substituted position A of the PYBI ligand with either electron-releasing triphenylamine () or pyrene ().

View Article and Find Full Text PDF

The cation binding strength of calix[4]pyrroles in the gas phase has been evaluated by computational studies and further substantiated by ESI mass spectrometry experiments. The DFT optimized geometries of [CP + X](+) complexes are found to be stable in a 1,3-alternate conformation through cation-π interactions and interestingly CPs are found to be better cation receptor than calix[4]arenes. The binding energy values of [CP + X](+) complexes computed at B2PLYP/TZVP//M05-2X/TZVP follows the binding order, Li(+) > Na(+) > K(+) > Rb(+) > Cs(+).

View Article and Find Full Text PDF

Oxidative difunctionalization of 2-amino-4H-pyrans was accomplished with iodobenzene diacetate (IBD) and N-chlorosuccinimide (NCS) reagents in alcoholic medium. 2-Amino-4H-pyrans undergo geminal dialkoxylation with the migration of an amino group (1a,b, 2a-i, 3a,b, and 4) in IBD, whereas with NCS addition of both chlorine and alkoxy groups takes place across the chromene double bond (6a-i).

View Article and Find Full Text PDF

Comprehension of the basic concepts for the design of systems for CO2 adsorption is imperative for increasing interest in technology for CO2 capture from the effluents. The efficacy of 20 naturally occurring amino acids (AAs) is demonstrated as the most potent CO2 capturing agents in the process of chemical absorption and physisorption through a systematic computational study using highly parametrized M05-2X/6-311+G(d,p) method. The ability of AAs to bind CO2 both in the noncovalent and covalent fashion and presence of multiple adsorption sites with varying magnitude of binding strengths in all 20 AAs makes them as most promising materials in the process of physisorption.

View Article and Find Full Text PDF

Two new heteroleptic ruthenium(II) photosensitizers that contains 2,2';6,2''-terpyridine with extended π-conjugation with donor groups, a 4,4'-dicarboxylic acid-2,2'-bipyridine anchoring ligand and a thiocyanate ligand have been designed, synthesized and fully characterized by CHN, mass spectrometry, UV-vis and fluorescence spectroscopies and cyclic voltammetry. The new sensitizers have either 3,5-di-tert-butyl phenyl (m-BL-5) or triphenylamine (m-BL-6) groups, where the molar extinction coefficient of both the sensitizers is higher than the analogous ruthenium dyes. Both the sensitizers were tested in dye-sensitized solar cells using two different redox electrolytes.

View Article and Find Full Text PDF

To explore the origin of the differences in UV photochemistry of uracil (RNA) and thymine (DNA) nucleobases, we have measured the UV resonance Raman spectra of uracil in aqueous solution at wavelengths throughout the lowest-energy absorption band and analyzed the resulting resonance Raman excitation profiles and absorption spectra using a time-dependent wave-packet formalism to obtain the initial excited-state structural changes. In contrast to thymine, which differs from uracil only by the presence of a methyl group at C(5), most of the resonance Raman intensity and resulting initial excited-state structural dynamics for uracil occur along in-plane hydrogen-bond angle deformation, ring stretching, and carbonyl vibrational modes. Weaker intensities and less significant structural dynamics are observed along the C=C stretching mode.

View Article and Find Full Text PDF

The computational study explores the electronic fine tuning of the exocyclic C-C single bond length in tetrahedranyl tetrahedrane as a function of various substituents. The factors which determine the bond lengths and bond strengths are examined by using the EDA method.

View Article and Find Full Text PDF

To explore the excited-state structural dynamics of thymine, a DNA nucleobase, we measured the resonance Raman spectra of thymine in aqueous solution at wavelengths throughout the lowest-energy absorption band. Self-consistent analysis of the resulting resonance Raman excitation profiles and absorption spectrum using a time-dependent wave packet formalism yielded the excited-state structural dynamics. The photochemically relevant C=C stretching and C-H deformation vibrational modes were found to exhibit maximum resonance Raman intensity and structural change upon photoexcitation for thymine, suggesting that the initial dynamics of thymine lie along the photochemical reaction coordinate.

View Article and Find Full Text PDF

Molecular beacons (MB) are becoming more common as sequence-selective detectors of nucleic acids. Although they can easily detect single-base mismatches, they have never been used to directly detect DNA or RNA damage. To measure the degree of ultraviolet (UV) light damage in oligonucleotides, we report a novel MB approach for general detection of photoproducts in UV-irradiated rU17 and dT17 oligonucleotides.

View Article and Find Full Text PDF