Root-knot nematodes (RKN) from the genus Meloidogyne induce the dedifferentiation of root vascular cells into giant multinucleate feeding cells. These feeding cells result from an extensive reprogramming of gene expression, and auxin is known to be a key player in their development. However, little is known about how the auxin signal is transmitted during giant cell development.
View Article and Find Full Text PDFRoot-knot nematodes (RKNs) are root endoparasites that induce the dedifferentiation of a few root cells and the reprogramming of their gene expression to generate giant hypermetabolic feeding cells. We identified two microRNA families, miR408 and miR398, as upregulated in Arabidopsis thaliana and Solanum lycopersicum roots infected by RKNs. In plants, the expression of these two conserved microRNA families is known to be activated by the SPL7 transcription factor in response to copper starvation.
View Article and Find Full Text PDFRoot-knot nematodes (RKNs) are among the most damaging pests of agricultural crops. Meloidogyne is an extremely polyphagous genus of nematodes that can infect thousands of plant species. A few genes for resistance (R-genes) to RKN suitable for use in crop breeding have been identified, but virulent strains and species of RKN have emerged that render these R-genes ineffective.
View Article and Find Full Text PDFPlant-parasitic root-knot and cyst nematodes are microscopic worms that cause severe damage to crops and induce major agricultural losses worldwide. These parasites penetrate into host roots and induce the formation of specialized feeding structures, which supply the resources required for nematode development. Root-knot nematodes induce the redifferentiation of five to seven root cells into giant multinucleate feeding cells, whereas cyst nematodes induce the formation of a multinucleate syncytium by targeting a single root cell.
View Article and Find Full Text PDF