Shepherding, the task of guiding a herd of autonomous individuals in a desired direction, is an essential skill employed in the herding of animals, crowd control, and evacuation operations. Integrating shepherding capabilities into robots holds promise to perform such tasks with increased efficiency and reduced labor costs. To date, robotic shepherds have only been designed to steer a herd towards a predetermined goal location without constraints on the trajectory.
View Article and Find Full Text PDFShepherding, the task of guiding a herd of autonomous individuals in a desired direction, is an essential skill to herd animals, enable crowd control and rescue from danger. Equipping robots with the capability of shepherding would allow performing such tasks with increased efficiency and reduced labour costs. So far, only single-robot or centralized multi-robot solutions have been proposed.
View Article and Find Full Text PDFIncreased fragmentation caused by habitat loss represents a major threat to the persistence of animal populations. How fragmentation affects populations depends on the rate at which individuals move between spatially separated patches. Whereas negative effects of habitat loss on biodiversity are well known, the effects of fragmentation on population dynamics and ecosystem stability remain less well understood.
View Article and Find Full Text PDFGroup interactions are widely observed in nature to optimize a set of critical collective behaviors, most notably sensing and decision making in uncertain environments. Nevertheless, these interactions are commonly modeled using local (proximity) networks, in which individuals interact within a certain spatial range. Recently, other interaction topologies have been revealed to support the emergence of higher levels of scalability and rapid information exchange.
View Article and Find Full Text PDFEfficient random searches are essential to the survival of foragers searching for sparsely distributed targets. Lévy walks have been found to optimize the search over a wide range of constraints. When targets are distributed within patches, generating a spatial memory over the detected targets can be beneficial towards optimizing the search efficiency.
View Article and Find Full Text PDFAutonomous decision-making is a fundamental requirement for the intelligent behavior of individual agents and systems. For artificial systems, one of the key design prerequisites is providing the system with the ability to make proper decisions. Current literature on collective artificial systems designs decision-making mechanisms inspired mostly by the successful natural systems.
View Article and Find Full Text PDFJ R Soc Interface
November 2017
Self-organized collective coordinated behaviour is an impressive phenomenon, observed in a variety of natural and artificial systems, in which coherent global structures or dynamics emerge from local interactions between individual parts. If the degree of collective integration of a system does not depend on size, its level of robustness and adaptivity is typically increased and we refer to it as scale-invariant. In this review, we first identify three main types of self-organized scale-invariant systems: scale-invariant spatial structures, scale-invariant topologies and scale-invariant dynamics.
View Article and Find Full Text PDF