The impact of heat treatment, pH and phytic acid (PA) concentration on the aggregation behavior and digestibility of whey protein isolate (WPI) was investigated. The experimental results indicated that below the isoelectric point of WPI, heat treatment and elevated PA levels significantly increased turbidity and particle size, leading to the aggregation of WPI molecules. No new chemical bonds were formed and the thermodynamic parameters ΔH < 0, ΔS > 0 and ΔG < 0 suggested that the interaction between PA and WPI was primarily a spontaneous electrostatic interaction driven by enthalpy.
View Article and Find Full Text PDFBoron is one of the essential trace elements in animals. Although boron supplementation can enhance immune function and promote cell proliferation, high-dose boron supplementation can negatively affect immune function and inhibit cell proliferation. Furthermore, its action pathway is unknown.
View Article and Find Full Text PDFThe aim of this work was to study the physical stability and rheological properties of an oil-in-water emulsion stabilized by a konjac glucomannan-whey protein (KGM-WP) mixture at a konjac glucomannan concentration of 0.1-0.5% (/) and a whey protein concentration of 1.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
January 2023
Whole flaxseed (flour) as a good source of omega-3 fatty acid and phytochemicals with excellent nutritional and functional attributes has been used to enrich foods for health promotion and disease prevention. However, several limitations and contemporary challenges still impact the development of whole flaxseed (flour)-enriched products on the global market, such as naturally occurring antinutritional factors and entrapment of nutrients within food matrix. Whole flaxseed (flour) with different existing forms could variably alter the techno-functional performance of food matrix, and ultimately affect the edible qualities of fortified food products.
View Article and Find Full Text PDFThere are multiple obstacles for the storage and digestion of orally administered bioactive macromolecules. This study developed a low-cost and sustained-release delivery system (sporopollenin exine capsules with zein/tannic acid modification) of proteins with excellent storage stability, and at the same time provided insights into the sustained-release mechanism through exploring the interaction between zein and tannic acid (TA). β-Galactosidase (β-Gal) was utilized as a model protein and loaded into sporopollenin exine capsules (SECs), which were then coated with the zein/TA system.
View Article and Find Full Text PDFInterfacial self-assembly has been a powerful driving force for fabricating functional and therapeutic carriers in emulsion systems. Herein, we reported a straightforward metal-phenolic supramolecular architecture, directly absorbed and cross-linked at the surfaces of oil drops and acted as the regulator between the oil and water interface to stabilize the emulsion systems. The results showed that the diverse interfacial properties and emulsion stability were tuned by the kinds and concentrations of polyphenols as well as the ratios of polyphenols to metal ions.
View Article and Find Full Text PDFBackground: The waste of salted egg white resources has always been a serious problem in the food industry. In this current study, we report on a kind of Pickering emulsion system, which was stabilized by duck egg white nanogels (DEWNs) and sodium alginate (SA), followed by which this system was crosslinked by calcium carbonate (CaCO ) via controlling the gluconolactone (GDL) concentrations, aiming to open up a promising route for making full use of these protein resources.
Results: The droplet size of the emulsion exhibited a reduction with an increase in SA concentrations, indicating that higher negative charges and steric hindrance was useful for a stable emulsion system.
There are multiple obstacles in the gastrointestinal tract (GIT) for oral administration of bioactive macromolecules. Here, we engineered an oral delivery vehicle (sporopollenin exine capsules with carboxymethylpachymaran (CMP)/metal ion modification) with targeted release based on food-grade ingredients and processing operations. Then, the interaction and binding mechanisms between CMP and metal ions in the vehicle were investigated.
View Article and Find Full Text PDFSupplementing different quantities of boron can significantly affect immune function in rat spleen, but the mechanism of action behind this effect remains unclear. Our purpose was to study the involvement of the estrogen membrane receptor GPR30 in the effect of boron on the proliferation, apoptosis, and immune function of rat spleen lymphocytes. Results showed that the addition of 0.
View Article and Find Full Text PDFThe properties of high loading capacity and long-term absorption are of great significance in the field of nutraceuticals or drugs delivery. Herein, we developed an innovative method to achieve these expected effects using plant exine capsules, a kind of natural pollen grains, which could provide large internal cavities for loading and robust exine against harsh conditions. In our work, we firstly made a soluble mixture of glycerol monostearate (GM) and nobiletin (NOB) inside the cavities of plant exine capsules by ultrasound with high temperature to obtain a supersaturated state of NOB, which could be characterized by XRD, DSC and FTIR.
View Article and Find Full Text PDFβ-Galactosidase (β-Gal) as a dietary supplement can alleviate symptoms of lactose intolerance. However, β-Gal is deactivated due to the highly acidic conditions and proteases in the digestive tract. In this work, β-Gal was encapsulated into L.
View Article and Find Full Text PDFInt J Biol Macromol
September 2019
β-Galactosidase (β-Gal) as dietary supplement has the ability to alleviate symptoms of lactose intolerance. This study investigated the ability of oligosaccharides to protect β-Gal against heat stress. Four kinds of oligosaccharides including Isomalto-oligosaccharides (IMO), Xylo-oligosaccharides (XOS), Konjac-oligosaccharides (KOS), and Mycose significantly increased the activity retention of β-Gal under heat treatment.
View Article and Find Full Text PDFProteins and polysaccharides can be used to assemble colloidal delivery systems suitable for industrial applications, such as functional foods, supplements, pharmaceuticals, and personal care products. The purpose of this work was to compare the physicochemical and structural properties of colloidal delivery systems prepared from lysozyme and carboxymethyl cellulose (CMC) at different biopolymer ratios, pH values, and salt levels. Specifically, the performance of unheated ("complexes") and heated ("microgels") lysozyme-CMC systems were compared.
View Article and Find Full Text PDFThe impact of phytic acid on lipid digestion and curcumin bioaccessibility in oil-in-water nanoemulsions was investigated using a simulated gastrointestinal tract (GIT). The size, charge, and structural organization of the colloidal particles in the system were measured as the curcumin-loaded emulsions (7 mg curcumin per g lipid) were passed through simulated mouth (pH 6.8, 2 min), stomach (pH 2.
View Article and Find Full Text PDFInt J Nanomedicine
August 2017
In this study, a novel coordination bonding system based on metal-tannic acid (TA) architecture on zein/carboxymethyl chitosan (CMCS) nanoparticles (NPs) was investigated for the pH-responsive drug delivery. CMCS has been reported to coat on zein NPs as delivery vehicles for drugs or nutrients in previous studies. The cleavage of either the "metal-TA" or "NH-metal" coordination bonds resulted in significant release of guest molecules with high stimulus sensitivity, especially in mild acidic conditions.
View Article and Find Full Text PDFInt J Biol Macromol
September 2017
In this study, negatively charged phosvitin (PV) and positively charged chitosan (CS) were alternately deposited on negatively charged cellulose mats via layer-by-layer (LBL) self-assembly technique. Morphologies of the LBL films coating mats were observed by scanning electron microscope (SEM). Afterwards, in vitro biomimetic mineralization was carried out through incubation of the fibrous mats in a simulated body fluid (SBF) solution for different time.
View Article and Find Full Text PDFEdible gliadin nanoparticles (GNPs) were fabricated using the anti-solvent method. They possessed unique high foamability and foam stability. An increasing concentration of GNPs accelerated their initial adsorption speed from the bulk phase to the interface and raised the viscoelastic modulus of interfacial films.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
October 2016
In this study, bovine serum albumin (BSA) and chitosan (CS) were used to prepare BSA-CS nanogels by a simple green self-assembly technique. Then the nanogels were successfully used to entrap doxorubicin hydrochloride (DOX) with an entrapment ratio of 46.3%, aiming to realize the slow-release effect and lower the cytotoxicity of DOX.
View Article and Find Full Text PDFInfluence of high intensity ultrasound (HIUS) on the structure and properties of ovalbumin (OVA) were investigated. It was found that the subunits and secondary structure of OVA did not change significantly with HIUS treatment from the electrophoretic patterns and circular dichroism (CD) spectrum. The amount of free sulfhydryl groups increased and intrinsic fluorescence spectra analysis indicated changes in the tertiary structure and partial unfold of OVA after sonication increased.
View Article and Find Full Text PDFA facile approach was investigated to encapsulate and protect curcumin (Cur) by self-assembly of lysozyme (Ly) and carboxymethylcellulose (CMC) of different degrees of substitution (DSs). This work studied the influence of Ly-CMC coacervates on the binding, solubility and stability of Cur. The interactions of Cur with Ly-CMC coacervates were researched by UV-vis, steady-state fluorescence, synchronous fluorescence and circular dichroism spectra.
View Article and Find Full Text PDFInt J Biol Macromol
November 2015
Sunlight photocatalyst was fabricated by in situ synthesis of Cu2O in the regenerated chitin (RC)/graphene oxide (GO) composite film, where the porous chitin film was used as the microreactor for the formation of nano Cu2O. Nano Cu2O was immobilized and evenly distributed in the matrix and Cu2O tended to grow on the GO sheets. Cu2O inside the matrix excite and generate free photoelectrons and electron holes, which was responsible for the degradation of dyes, while GO transferred the yielded photoelectrons to prevent the generation of local high potential zone and induce the chain degradation at more points.
View Article and Find Full Text PDFOctenyl succinic anhydride (OSA) starches were prepared from four cultivars of native indica rice starches with amylose contents of 1.90%, 18.01%, 25.
View Article and Find Full Text PDF