Lignin-based nanoparticles hold tremendous potential for various applications. This study proposes an innovative and straightforward method for the synthesis of spherical hybrid lignin nanoparticles (hy-LNPs) with a tunable pore structure. The approach involves blending lignin with 20 wt% polyamide-epichlorohydrin, resulting in the formation of thermoresponsive lignin-based polyelectrolyte complexes.
View Article and Find Full Text PDFLignin nanoparticles (LNPs) present a potential avenue for the high-value utilization of lignin. However, the simple and ecofriendly method of thermally induced self-assembly for the preparation of LNPs has been overlooked due to a lack of sufficient understanding of the lignin aggregation mechanism. Therefore, this study focuses on the kinetics of thermally induced lignin aggregation.
View Article and Find Full Text PDFIntroduction: The quality evaluation of Coptidis rhizome (CR) is attributed to the origin and processing method, and this strategy of ignoring the bioactive components usually leads to biased quality analysis, which is difficult to indicate the clinical efficacy.
Objectives: In order to evaluate the quality level of different species of CR, we collected 20 batches of CR and investigated the fingerprint-effect relationship.
Methods: High-performance liquid chromatography (HPLC) fingerprints of CR were established, and the fingerprint-effect relationship was explored using cluster analysis, principal component analysis, Pearson correlation analysis, grey relation analysis, and partial least squares regression.
Despite recent progress in the development of earth abundant electrochemical catalyst for hydrogen evolution reaction (HER), Pt based materials still stand as the state of the art HER catalyst. Due to the high cost of Pt, it is desirable to increase the utilization efficiency of Pt in practical HER process to a realize cost effective hydrogen production. Herein, we repot a novel nitrogen doped ordered mesoporous carbon supported Pt (Pt@NOMC-A) catalyst with a low Pt loading of 7.
View Article and Find Full Text PDF