Increasing riverine phosphorus (P) levels in headwaters due to expanded and intensified human activities are worldwide concerns, because P is a well-known limiting nutrient for freshwater eutrophication. Here we adopt the conceptual framework of the SPAtially Referenced Regressions On Watershed attributes (SPARROW) model to describe total phosphorus (TP) sources and transport in a headwater watershed undergoing rapid agricultural expansion in the upper Taihu Lake Basin, China. Our models, which include variables for land cover, river length, runoff depth, and pond density, explain 94% of the spatio-temporal variability in TP loads.
View Article and Find Full Text PDFThe existence of lowland ponds alter watershed nitrogen (N) cycles via combined changes in runoff and N processing potential, which can significantly buffer watershed N transport. Here, we adopt the conceptual framework of the SPAtially Referenced Regressions On Watershed attributes (SPARROW) model to describe N transport and explore the buffering roles of lowland ponds in a small headwater watershed of Taihu Lake Basin, China. Our model, which included variables for nutrient sources, riverine length, precipitation and pond density, explained 95% of the spatio-temporal variability in total N loads.
View Article and Find Full Text PDF