In oncological nanomedicine, overcoming the dual-phase high interstitial pressure in the tumor microenvironment is pivotal for enhancing the penetration and efficacy of nanotherapeutics. The elevated tumor interstitial solid pressure (TISP) is largely attributed to the overaccumulation of collagen in the extracellular matrix, while the increased tumor interstitial fluid pressure (TIFP) stems from the accumulation of fluid due to the aberrant vascular architecture. In this context, metal-organic frameworks (MOFs) with catalytic efficiency have shown potential in degrading tumor interstitial components, thereby reducing interstitial pressure.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2024
Fenton/Fenton-like reaction induced chemical dynamic therapy (CDT) has been widely recognized in tumor therapy. Due to the low efficiency of conversion from high-valent metal ions (M) to low-valent ions (M) in the Fenton/Fenton-like catalytic process, enhancing the conversion efficiency safely and effectively would create a great opportunity for the clinical application of CDT. In the study, a universal nanoreactor (NR) consisting of liposome (Lip), tumor cell membrane (CM), and bis(2,4,5-trichloro-6-carboxyphenyl) oxalate (CPPO) is developed to tackle this challenge.
View Article and Find Full Text PDFDoxorubicin (DOX) is widely used in clinic as a broad-spectrum chemotherapy drug, which can enhance the efficacy of chemodynamic therapy (CDT) by interfering tumor-related metabolize to increase HO content. However, DOX can induce serious cardiomyopathy (DIC) due to its oxidative stress in cardiomyocytes. Eliminating oxidative stress would create a significant opportunity for the clinical application of DOX combined with CDT.
View Article and Find Full Text PDFDirigent (DIR) members have been shown to play essential roles in plant growth, development and adaptation to environmental changes. However, to date, there has been no systematic analysis of the DIR members in the genus . Here, 420 genes were identified from nine rice species to have the conserved DIR domain.
View Article and Find Full Text PDFPlant growth and crop yield are essentially determined by photosynthesis when considering carbon dioxide (CO) availability. CO diffusion inside a leaf is one of the factors that dictate the CO concentrations in chloroplasts. Carbonic anhydrases (CAs) are zinc-containing enzymes that interconvert CO and bicarbonate ions (HCO), which, consequently, affect CO diffusion and thus play a fundamental role in all photosynthetic organisms.
View Article and Find Full Text PDFBackground: The rich biodiversity of medicinal plants and their importance as sources of novel therapeutics and lead compounds warrant further research. Despite advances in debulking surgery and chemotherapy, the risks of recurrence of ovarian cancer and resistance to therapy are significant and the clinical outcomes of ovarian cancer remain poor or even incurable.
Objective: This study aims to investigate the effects of leaf extracts from a medicinal plant Leea indica and its selected phytoconstituents on human ovarian cancer cells and in combination with oxaliplatin and natural killer (NK) cells.
The absence of lymphatic vessels in tumors leads to the retention of interstitial fluid, and the formation of an inverse pressure difference between the tumor and blood vessels hinders drug delivery deep into the tumor, which leads to tumor recurrence and metastasis. Therefore, we designed a novel strategy to downregulate tumor interstitial fluid pressure (TIFP) by water splitting in the tumor interstitium based on piezoelectric catalysis nanomedicine. First, the chemotherapeutic drug doxorubicin (DOX) was loaded on the piezoelectric catalytic material MoS and then encapsulated with tumor cell membrane (CM) to obtain MD@C.
View Article and Find Full Text PDFGrowth at increased concentrations of CO induces a reduction in seed zinc (Zn) and iron (Fe). Using Arabidopsis thaliana, we investigated whether this could be mitigated by reducing the elevated CO -induced decrease in transpiration. We used an infrared imaging-based screen to isolate mutants in At1g08080 that encodes ALPHA CARBONIC ANHYDRASE 7 (ACA7).
View Article and Find Full Text PDFAmmonia (NH) is the most abundant alkaline component and can react with atmospheric acidic species to form aerosols that can lead to numerous environmental and health issues. Increasing atmospheric NH over agricultural regions in the US has been documented. However, spatiotemporal changes of NH concentrations over the entire US are still not thoroughly understood, and the factors that drive these changes remain unknown.
View Article and Find Full Text PDFGold nanomaterials (GNMs) are used in photothermal therapy due to their superior optical properties and excellent biocompatibility. However, the complex preparation process involving seed-mediated growth limits further clinical applications of GNMs. Herein, a novel one-pot approach to rapidly prepare liposome-based branched gold nanoshells (BGNS) as an antitumor drug nanocarrier is reported.
View Article and Find Full Text PDFCells in the center of solid tumors have always been an abyss untouched by treatments because of their deep location and increased drug resistance. Herein, we designed a rational strategy for sequential intra-intercellular delivery of nanomedicine to deep sites of drug-resistant solid tumors. In our formulation, dopamine and hemoglobin were polymerized to form a smart nanocarrier (PDA/Hb).
View Article and Find Full Text PDFTumor markers play an important role in the early diagnosis and therapeutic effect monitoring of tumors. An electrochemical biosensor was developed based on multi-branched gold nanoshells (BGSs) and octreotide (OCT) functionalized Pt nano-flakes (PtNFs) modified electrodes, which was used for detection of tumor-specific markers to evaluate tumor cells. Sandwich-type nano-hybrid materials were prepared by layer-by-layer modification.
View Article and Find Full Text PDFA key challenge in developing an ethanol oxidation reaction is nontoxic fabrication of highly active stable and low-cost catalysts. Here we design a green synthetic strategy of AgPd bimetallic nanosphere by a dual-template cascade method. The Pd nanoshell is firstly prepared using Vapreotide acetate as a primary template, and then the Ag nanoshell acts as a secondary template for the distribution of AgPd alloy nanoparticles.
View Article and Find Full Text PDFACS Biomater Sci Eng
September 2019
The application of peptide-based biomaterials in nanocarriers can effectively reduce toxicity and improve the biocompatibility. In our study, a dual stimuli-responsive peptide-based drug delivery system was designed and synthesized, which was nontoxic and achieved the chem-photothermal therapy synergistic effect. Lanreotide (Lan), a kind of somatostatin analogue, was used as internal template to prepared lychee-shaped palladium (Pd) nanoparticles (Lan-PdNPs).
View Article and Find Full Text PDFACS Biomater Sci Eng
July 2019
Chemotherapy is one of the most effective methods of treating tumors in clinical study currently, but drug side effects usually are unbearable to the patient, which also makes it difficult to continue chemotherapy. Enhanced drug efficacy and reduced drug side effects are the main strategies for tumor therapy. Herein, based on biochemical regulation, theanine liposomes were designed to adjuvant doxorubicin (DOX) therapy, which can reduce the adverse reactions and enhance the effect of DOX.
View Article and Find Full Text PDFLimited therapeutic effects and obvious side effects are two critical problems affecting tumor therapy. Herein, we designed an ingenious nanocarrier, platinum/gold bimetallic-nanoshell-coated triptolide liposomes (Pt@Au-TP-Lips), to achieve enhanced chemophotothermal therapy against cancer. Compared to conventional gold nanoflower structures, the platinum/gold bimetallic (Pt@Au) core-shells exhibited broader near-infrared (NIR) absorption due to the ultrastrong plasmonic coupling effect.
View Article and Find Full Text PDFWe analyzed trends in climatologic, hydrologic, and growing season length variables, identified the important variables effecting growing season length changes, and evaluated the influence of a lengthened growing season on increasing evapotranspiration trends for the central Appalachian Mountains region of the United States. We generated three growing season length variables using remotely sensed GIMMS NDVI3g data, two variables from measured streamflow, and 13 climate parameters from gridded datasets. We included various climate, hydrology, and phenology explanatory variables in two applications of Principle Components Analysis to reduce dimensionality, then utilized the final variables in two Linear Mixed Effects models to evaluate the role of climate on growing season length and evapotranspiration.
View Article and Find Full Text PDFHand, foot, and mouth disease (HFMD) is a worldwide infectious disease, prominent in China. China's HFMD data are sparse with a large number of observed zeros across locations and over time. However, no previous studies have considered such a zero-inflated problem on HFMD's spatiotemporal risk analysis and mapping, not to mention for the entire Mainland China at county level.
View Article and Find Full Text PDFTemperature plays an important role in the growth and development of arthropods, and thus the current trend of climate change will alter their biology and species distribution. We used Chaetodactylus krombeini (Acari: Chaetodactylidae), a cleptoparasitic mite associated with Osmia bees (Hymenoptera: Megachilidae), as a model organism to investigate how temperature affects the development and voltinism of C. krombeini in the eastern United States.
View Article and Find Full Text PDF