Neutrophil extracellular traps (NETs) act as a vital first line of defence against tissue damage and pathogens, playing a significant role in improving diseases such as intestinal ischemia reperfusion injury (IRI). However, we observed that after intestinal injury, intestinal bacteria and lipopolysaccharides (LPS) can enter the circulatory system, leading to a significant secondary increase in NETs production and the subsequent activation of a coagulation cascade. This phenomenon contributes to a pathological process known as the 'second strike' of NETs, which exaggerates intestinal damage and microcirculation disturbance.
View Article and Find Full Text PDFDiabetic kidney disease (DKD) is the most common cause of end-stage renal disease and has gradually become a public health problem worldwide. DKD is increasingly recognized as a comprehensive inflammatory disease that is largely regulated by T cells. Given the pivotal role of T cells and T cells-producing cytokines in DKD, we summarized recent advances concerning T cells in the progression of type 2 diabetic nephropathy and provided a novel perspective of immune-related factors in diabetes.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2020
Background: As the greenhouse effect becomes more serious and carbon dioxide emissions continue rise, the application prospects of carbon sequestration or carbon-saving pathways increase. Previously, we constructed an EP-bifido pathway in by combining Embden-Meyerhof-Parnas pathway, pentose phosphate pathway and "bifid shunt" for high acetyl-CoA production. There is much room for improvement in the EP-bifido pathway, including in production of target compounds such as poly(hydroxybutyrate) (PHB).
View Article and Find Full Text PDFThe low carbon yield from native metabolic machinery produces unfavorable process economics during the biological conversion of substrates to desirable bioproducts. To obtain higher carbon yields, we constructed a carbon conservation pathway named EP-bifido pathway in Escherichia coli by combining Embden-Meyerhof-Parnas Pathway, Pentose Phosphate Pathway and "bifid shunt", to generate high yield acetyl-CoA from glucose. C-Metabolic flux analysis confirmed the successful and appropriate employment of the EP-bifido pathway.
View Article and Find Full Text PDFBiotechnol Bioeng
December 2016
Escherichia coli is commonly used as a host for the extracellular production of proteins. However, its secretion capacity is often limited to a frustratingly low level compared with other expression hosts, because E. coli has a complex cell envelope with two layers.
View Article and Find Full Text PDFBackground: The microbial conversion of plant biomass into value added products is an attractive option to address the impacts of petroleum dependency. The Gram-negative bacterium Escherichia coli is commonly used as host for the industrial production of various chemical products with a variety of sugars as carbon sources. However, this strain neither produces endogenous cellulose degradation enzymes nor secrets heterologous cellulases for its poor secretory capacity.
View Article and Find Full Text PDFThe copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(HB-co-HHx)] has the potential to serve as a biodegradable tissue engineering material. However, the production of this kind of copolymer still suffers from high cost and uncertainty. We describe here the design of metabolic pathways to synthesize P(HB-co-HHx) directly from glucose using recombinant Escherichia coli.
View Article and Find Full Text PDF