Background: Depression and tooth loss are associated with the occurrence of systemic disease or the progression of multi-factorial disease, and both are considered important public health issues by World Health Organization (WHO). Previous research just suggested that tooth loss can generate psychological stress, low self-esteem, anxiety and other emotional disturbances. However, the precise correlation and underlying mechanisms between depression and tooth loss remains poorly understood.
View Article and Find Full Text PDFPlants delicately regulate endogenous auxin levels through the coordination of transport, biosynthesis, and inactivation, which is crucial for growth and development. While it is well-established that the actin cytoskeleton can regulate auxin levels by affecting polar transport, its potential role in auxin biosynthesis has remained largely unexplored. Using LC-MS/MS-based methods combined with fluorescent auxin marker detection, we observed a significant increase in root auxin levels upon deletion of the actin bundling proteins AtFIM4 and AtFIM5.
View Article and Find Full Text PDFis an important legume forage grass and a key component of sustainable livestock development. Serving as an essential component, the gene family, a crucial group of regulatory transcription factors in plants, holds significant importance in their response to abiotic stresses. However, there has been no systematic analysis conducted on the gene family in .
View Article and Find Full Text PDF(1) Background: Both tooth loss and diabetes have high global prevalence, and both have a significant influence on patients' general health and quality of life. Previous research has indicated a possible connection between tooth loss and diabetes, but it has been unclear whether tooth loss has an effect on the development of diabetes and how it affects it. We aim to investigate the relationship between insulin resistance (IR) and tooth loss and examine how the systemic immune-inflammation index (SII) level and diet quality mediate it.
View Article and Find Full Text PDFBone tissues are dynamically reconstructed during the entire life cycle phase, which is an exquisitely regulated process controlled by intracellular and intercellular signals transmitted through physicochemical and biochemical stimulation. Recently, the role of electrical activity in promoting bone regeneration has attracted great attention, making the design, fabrication, and selection of bioelectric bio-reactive materials a focus. Under specific conditions, piezoelectric, photoelectric, magnetoelectric, acoustoelectric, and thermoelectric materials can generate bioelectric signals similar to those of natural tissues and stimulate osteogenesis-related signaling pathways to enhance the regeneration of bone defects, which can be used for designing novel smart biological materials for engineering tissue regeneration.
View Article and Find Full Text PDFExplicit feedback and implicit feedback are two important types of heterogeneous data for constructing a recommendation system. The combination of the two can effectively improve the performance of the recommendation system. However, most of the current deep learning recommendation models fail to fully exploit the complementary advantages of two types of data combined and usually only use binary implicit feedback data.
View Article and Find Full Text PDFAtCYP38, a thylakoid lumen localized immunophilin, is found to be essential for photosystem II assembly and maintenance, but how AtCYP38 functions in chloroplast remains unknown. Based on previous functional studies and its crystal structure, we hypothesize that AtCYP38 should function via binding its targets or cofactors in the thylakoid lumen. To identify potential interacting proteins of AtCYP38, we first adopted ATTED-II and STRING web-tools, and found 12 proteins functionally related to AtCYP38.
View Article and Find Full Text PDFThe basic helix-loop-helix (bHLH) transcription factor family is one of the largest transcription factor gene families in Arabidopsis thaliana, and contains a bHLH motif that is highly conserved throughout eukaryotic organisms. Members of this family have two conserved motifs, a basic DNA binding region and a helix-loop-helix (HLH) region. These proteins containing bHLH domain usually act as homo- or heterodimers to regulate the expression of their target genes, which are involved in many physiological processes and have a broad range of functions in biosynthesis, metabolism and transduction of plant hormones.
View Article and Find Full Text PDFThe effect of cropping system on the distribution of organic carbon (OC) and nitrogen (N) in soil aggregates has not been well addressed, which is important for understanding the sequestration of OC and N in agricultural soils. We analyzed the distribution of OC and N associated with soil aggregates in three unfertilized cropping systems in a 27-year field experiment: continuously cropped alfalfa, continuously cropped wheat and a legume-grain rotation. The objectives were to understand the effect of cropping system on the distribution of OC and N in aggregates and to examine the relationships between the changes in OC and N stocks in total soils and in aggregates.
View Article and Find Full Text PDFPhytochromes (Phy) and phytochrome-interacting factor (PIF) transcription factors constitute a major signaling module that controls plant development in response to red and far-red light. A low red:far-red ratio is interpreted as shading by neighbor plants and induces cell elongation-a phenomenon called shade-avoidance syndrome (SAS). PAR1 and its closest homolog PAR2 are negative regulators of SAS; they belong to the HLH transcription factor family that lacks a typical basic domain required for DNA binding, and they are believed to regulate gene expressions through DNA binding transcription factors that are yet to be identified.
View Article and Find Full Text PDFLight and brassinosteroid (BR) antagonistically regulate the developmental switch from etiolation in the dark to photomorphogenesis in the light in plants. Here, we identify GATA2 as a key transcriptional regulator that mediates the crosstalk between BR- and light-signaling pathways. Overexpression of GATA2 causes constitutive photomorphogenesis in the dark, whereas suppression of GATA2 reduces photomorphogenesis caused by light, BR deficiency, or the constitutive photomorphogenesis mutant cop1.
View Article and Find Full Text PDF