Publications by authors named "Yapp D"

Zein can be utilized to form nanoscale particles for drug delivery applications. Despite the ease of synthesis, these particles often aggregate when exposed to physiologically relevant conditions (e.g.

View Article and Find Full Text PDF

Drug-delivery vehicles have been used extensively to modulate the biodistribution of drugs for the purpose of maximizing their therapeutic effects while minimizing systemic toxicity. The release characteristics of the vehicle must be balanced with its encapsulation properties to achieve optimal delivery of the drug. An alternative approach is to design a delivery vehicle that preferentially releases its contents under specific endogenous (e.

View Article and Find Full Text PDF

Background: A common feature of solid tumours that are resistant to therapy is the presence of regions with low oxygen content (i.e., hypoxia).

View Article and Find Full Text PDF

The surface functionalization of nanoparticles (NPs) is of great interest for improving the use of NPs in, for example, therapeutic and diagnostic applications. The conjugation of specific molecules with NPs through the formation of covalent linkages is often sought to provide a high degree of colloidal stability and biocompatibility, as well as to provide functional groups for further surface modification. NPs of lithium niobate (LiNbO) have been explored for use in second-harmonic-generation (SHG)-based bioimaging, expanding the applications of SHG-based microscopy techniques.

View Article and Find Full Text PDF

Uncovering the mechanisms that underpin how tumor cells adapt to microenvironmental stress is essential to better understand cancer progression. The HACE1 (HECT domain and ankyrin repeat-containing E3 ubiquitin-protein ligase) gene is a tumor suppressor that inhibits the growth, invasive capacity, and metastasis of cancer cells. However, the direct regulatory pathways whereby HACE1 confers this tumor-suppressive effect remain to be fully elucidated.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of carbonic anhydrase 9 (CA9) in pancreatic ductal adenocarcinoma (PDAC), which is often resistant to standard treatments due to its hypoxic environment and KRAS mutations.
  • Researchers conducted experiments on human and mouse PDAC cells, observing the effects of blocking CA9 and combining it with gemcitabine to evaluate potential cytotoxic outcomes.
  • Findings revealed that knocking down CA9 or using inhibitors increased cytotoxicity in hypoxic conditions, suggesting CA9 is a promising target for enhancing the efficacy of cancer treatments in PDAC patients.
View Article and Find Full Text PDF

This review explores the use of energy sources, including ultrasound, magnetic fields, and external beam radiation, to trigger the delivery of drugs from liposomes in a tumor in a spatially-specific manner. Each section explores the mechanism(s) of drug release that can be achieved using liposomes in conjunction with the external trigger. Subsequently, the treatment's formulation factors are discussed, highlighting the parameters of both the therapy and the medical device.

View Article and Find Full Text PDF
Article Synopsis
  • Inhibition of PAPSS1 increases the effectiveness of cisplatin, a DNA-damaging agent, in non-small cell lung cancer (NSCLC) cell lines, with significant findings in hypoxic and starvation conditions.
  • Clinical data from lung adenocarcinoma samples showed that lower PAPSS1 expression correlated with higher sensitivity to cisplatin and better survival rates in patients undergoing platinum-based chemotherapy.
  • The study suggests that targeting PAPSS1 could enhance treatment outcomes when combined with platinum drugs, indicating its potential as a therapeutic target and biomarker for cancer sensitivity.
View Article and Find Full Text PDF

Cyclin-dependent kinase 10 (CDK10), a CDC2-related kinase, is highly expressed in colorectal cancer. Its role in the pathogenesis of colorectal cancer is unknown. This study examines the function of CDK10 in colorectal cancer, and demonstrates its role in suppressing apoptosis and in promoting tumor growth and Modulation of CDK10 expression in colorectal cancer cell lines demonstrates that CDK10 promotes cell growth, reduces chemosensitivity and inhibits apoptosis by upregulating the expression of Bcl-2.

View Article and Find Full Text PDF

Background: Metronomic chemotherapy has shown promising activity against solid tumors and is believed to act in an antiangiogenic manner. The current study describes and quantifies the therapeutic efficacy, and mode of activity, of metronomic gemcitabine and a dedicated antiangiogenic agent (DC101) in patient-derived xenografts of pancreatic cancer.

Methods: Two primary human pancreatic cancer xenograft lines were dosed metronomically with gemcitabine or DC101 weekly.

View Article and Find Full Text PDF

Overexpresssion of HER-2 in the MDA-MB-435/LCC6 (LCC6(HER-2)) tumour model is associated with significantly increased hypoxia and reduced necrosis compared to isogenic control tumours (LCC6(Vector)); this difference was not related to tumour size or changes in vascular architecture. To further evaluate factors responsible for HER-2-associated changes in the tumour microenvironment, small animal magnetic resonance imaging (MRI) and positron emission tomography (PET) were used to measure tumour tissue perfusion and metabolism, respectively. The imaging data was further corroborated by analysis of molecular markers pertaining to energy homeostasis, and measurements of hypoxia and glucose consumption.

View Article and Find Full Text PDF
Article Synopsis
  • A series of novel ferrocene-functionalized Ru(III) complexes were synthesized by modifying the anti-metastatic compound NAMI-A through direct coupling with ferrocene at various positions on pyridine, affecting their stability and bioavailability.
  • Studies using electron paramagnetic resonance (EPR) and UV-vis spectroscopy showed that special configurations, particularly those substituting ferrocene at the 3 position, displayed improved solution stability and interactions with human serum albumin, hinting at enhanced biological properties.
  • Cyclic voltammetry results indicated that while the ferrocene groups modestly alter the reduction potential of the Ru center, they also led to notable variations in the electrochemical behavior of the complexes, implying
View Article and Find Full Text PDF

Our laboratory reported that Irinophore C™ (IrC™; a lipid-based nanoparticulate formulation of irinotecan) is effective against an orthotopic model of glioblastoma (GBM) and that treatment with IrC™ was associated with vascular normalization within the tumor. Here, the therapeutic effects of IrC™ when used in combination with temozolomide (TMZ) in concurrent and sequential treatment schedules were tested. It was anticipated that IrC™ engendered vascular normalization would increase the delivery of TMZ to the tumor and that this would be reflected by improved treatment outcomes.

View Article and Find Full Text PDF

(68)Ga is an attractive radiometal for use in positron emission tomography (PET) imaging. The success of (68)Ga-based agents is dependent on a chelator that exhibits rapid radiometal incorporation, and strong kinetic inertness to prevent transchelation of (68)Ga in vivo. The linear chelating agents H2dedpa (1,2-[[6-carboxypyridin-2-yl]methylamino]ethane) and H2CHXdedpa (CHX = cyclohexyl/cyclohexane) (N4O2) have recently been developed that bind Ga(3+) quickly and under mild conditions, ideal properties to be incorporated into a (68)Ga PET imaging agent.

View Article and Find Full Text PDF

Background: Over-expression of insulin-like growth factor 2 mRNA binding protein 3 (IMP3) is correlated with poor prognosis in pancreatic ductal adenocarcinoma (PDAC). Previous studies examining other cancer types have implicated IMP3 in the regulation of several cellular functions that are characteristic of tumour cells. However, the role of this oncofetal protein in PDAC progression remained unclear.

View Article and Find Full Text PDF

Purpose: A liposomal formulation of irinotecan, Irinophore C™ (IrC™) is efficacious in a panel of tumor models, normalizes tumor vasculature, and increases the accumulation of a second drug in the same tumor. We now show that Irinophore C™ is also effective against patient derived xenografts (PDX) of colon cancer, and examine the kinetics of vascular normalization in the HT-29 tumor model and assess how these changes might be used with 5-FU sequentially.

Materials And Methods: Rag2M mice bearing HT-29 tumors were treated with IrC™ (25mg/kg; Q7D×3) for up to three weeks.

View Article and Find Full Text PDF

Oxidative stress has been implicated in a variety of conditions, including cancer, heart failure, diabetes, neurodegeneration and other diseases. A potential biomarker for oxidative stress is the cystine/glutamate transporter, system x(C)(-). L-Aminosuberic acid (L-ASu) has been identified as a system x(C)(-) substrate.

View Article and Find Full Text PDF

The design of dual mode fluorescent-PET peptidic tracers that can be labeled with [(18)F]fluoride at high specific activity and high yield has been challenged by the short half-life of (18)F and its aqueous indolence toward nucleophilic displacement, that often necessitates multistep reactions that start with punctiliously dry conditions. Here we present a modular approach to constructing a fluorescent dimeric peptide with a pendant radioprosthesis that is labeled in water with [(18)F]fluoride ion in a single, user-friendly step. The modular approach starts with grafting a new zwitterionic organotrifluoroborate radioprosthesis onto a pentaerythritol core with three pendent alkynes that enable successive grafting of a bright fluorophore (rhodamine) followed by two peptides (cylcoRGD).

View Article and Find Full Text PDF

A new zwitterionic organotrifluoroborate is appended to three radiosynthons that afford undergo facile bioconjugation to several clinically relevant peptides and one enzyme inhibitor. Molecularly complex bioconjugates are (18)F-labeled in a single aqueous step in rapid time (<15 min) without HPLC purification to afford tracers in good yields (>200 mCi, 20-40%) at high specific activity (≥3 Ci/μmol) and at >98% purity. PET imaging shows in vivo stability and tumor uptake.

View Article and Find Full Text PDF

Purpose: Triple-negative breast cancers (TNBC) are defined by a lack of expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (ERBB2/HER2). Although initially responsive to chemotherapy, most recurrent TNBCs develop resistance, resulting in disease progression. Autophagy is a lysosome-mediated degradation and recycling process that can function as an adaptive survival response during chemotherapy and contribute to chemoresistance.

View Article and Find Full Text PDF

Unlabelled: Glutathione is the predominant endogenous cellular antioxidant, playing a critical role in the cellular defensive response to oxidative stress by neutralizing free radicals and reactive oxygen species. With cysteine as the rate-limiting substrate in glutathione biosynthesis, the cystine/glutamate transporter (system xc(-)) represents a potentially attractive PET biomarker to enable in vivo quantification of xc(-) activity in response to oxidative stress associated with disease. We have developed a system xc(-) substrate that incorporates characteristics of both natural substrates, L-cystine and L-glutamate (L-Glu).

View Article and Find Full Text PDF

A series of pyridine-based derivatives of the clinically successful Ru(III)-based complexes indazolium [trans-RuCl4(1H-indazole)2] (KP1019) and sodium [trans-RuCl4(1H-indazole)2] (KP1339) have been synthesized to probe the effect of hydrophobic interactions with human serum albumin (hsA) on anticancer activity. The solution behavior and protein interactions of the new compounds were characterized by using electron paramagnetic resonance (EPR) and UV/Vis spectroscopy. These studies have revealed that incorporation of hydrophobic substituents at the 4'-position of the axial pyridine ligand stabilizes non-coordinate interactions with hsA.

View Article and Find Full Text PDF

Introduction: Arylboronates afford rapid aqueous (18)F-labeling via the creation of a highly polar (18)F-aryltrifluoroborate anion ((18)F-ArBF3(-)).

Hypothesis: Radiosynthesis of an (18)F-ArBF3(-) can be successfully applied to a clinically relevant peptide. To test this hypothesis, we labeled dimeric-cylcoRGD, [c(RGDfK)]2E because a) it is molecularly complex and provides a challenging substrate to test the application of this technique, and b) [c(RGDfK)]2E has already been labeled via several (18)F-labeling methods which provide for a preliminary comparison.

View Article and Find Full Text PDF

Two new rhenium complexes containing pyridine-triazole (pyta) and quinoline-triazole (quinta) ligands with attached glutamine-targeting agents have been characterized and tested for uptake in the HT-29 human colon adenocarcinoma cell line. The glutamine moiety in Re(CO)3Br(pyta) (1) and Re(CO)3Br(quinta) (2) remains pendant in solution. Both complexes exhibit absorptions in the 300-400-nm range with metal-to-ligand charge transfer (MLCT) character, as predicted by time-dependent density functional theory calculations.

View Article and Find Full Text PDF

Introduction: Positron Emission Tomography (PET) is a rapidly expanding, cutting edge technology for preclinical evaluation, cancer diagnosis and staging, and patient management. A one-step aqueous (18)F-labeling method, which can be applied to peptides to provide functional in vivo images, has been a long-standing challenge in PET imaging. Over the past few years, we have sought a rapid and mild radiolabeling method based on the aqueous radiosynthesis of in vivo stable aryltrifluoroborate (ArBF(3)(-)) conjugates.

View Article and Find Full Text PDF