Publications by authors named "Yapeng Cai"

An efficient FLP-mediated cycloisomerization is described, providing easy access to quinolinium and chromenylium derivatives by treatment of readily available propargylanilines and aryl propargyl ethers with Lewis acidic boranes, respectively. The reaction proceeds via a 6--dig cyclization/dehydrogenation sequence. The heteroatom functions serve as Lewis bases in combination with Lewis acidic boranes to effect synergistic activation of an alkynyl triple bond and a C-H bond.

View Article and Find Full Text PDF

Pd-catalyzed Suzuki-Miyaura cross-coupling is one of the most straightforward and versatile methods for the construction of functionalized arenes and heteroarenes but site-selective cross-coupling of polyhalogenated (hetero)arenes containing identical halogen substituents remains a challenging problem. Herein, we report a new candidate for heterocyclic Suzuki-Miyaura coupling reaction. This candidate has been applied in organometallic systems by combining classical aryl boronic acid reagents with non-classical heteroarenes.

View Article and Find Full Text PDF

A novel one-pot reaction producing a metal vinylidene structure in a five-membered ring by cyclization of a multiyne has been achieved. The ring strain and the high stability of the cyclic metal vinylidene complexes have been analyzed experimentally and computationally. The metal vinylidene unit in a fused-ring complex is unreactive to both nucleophiles and electrophiles.

View Article and Find Full Text PDF

A number of - and -shaped perylene diimide (PDI) heterohelicenes with high dipole moments were synthesized from simple perylene tetrabutylester (PTE). Taking advantage of the weak coordination ability of the sterically crowded peri ester groups in PTE, efficient Rh(III)-catalyzed 2,8- and 2,11-bisiodinations of the perylene core were realized. The 2,8- and 2,11-diiodinated PTEs and PDIs represent key synthons for further -π-extensions.

View Article and Find Full Text PDF

Mononuclear metal-peroxo species are invoked as the key intermediates in metalloenzymatic or synthetic catalysis. However, either transience or sluggishness reactivity of synthetic analogs of metal-peroxo species impedes our understanding of oxygen activation mechanism. Herein, we designed and characterized a dioxygen-derived mononuclear osmium-peroxo complex, in which the peroxo ligand is stabilized by internally aromatic metallacycle.

View Article and Find Full Text PDF