Front Cell Infect Microbiol
February 2020
An effective vaccine against the parasite is likely to require the induction of robust antibody and T cell responses. Chimeric virus-like particles are an effective vaccine platform for induction of antibody responses, but their capacity to induce robust cellular responses and cell-mediated protection against pathogen challenge has not been established. To evaluate this, we produced chimeric constructs using the murine polyomavirus structural protein with surface-exposed CD8 or CD4 T cell or B cell repeat epitopes derived from the circumsporozoite protein, and assessed immunogenicity and protective capacity in a murine model.
View Article and Find Full Text PDFThe success of recombinant virus-like particles (VLPs) for human papillomavirus and hepatitis B demonstrates the potential of VLPs as safe and efficacious vaccines. With new modular designs emerging, the effects of antigen module insertion on the self-assembly and structural integrity of VLPs should be clarified so as to better enabling improved design. Previous work has revealed insights into the molecular energetics of a VLP subunit, capsomere, comparing energetics within various solution conditions known to drive or inhibit self-assembly.
View Article and Find Full Text PDFNanotechnology promises a revolution in medicine including through new vaccine approaches. The use of nanoparticles in vaccination has, to date, focused on attaching antigen directly to or within nanoparticle structures to enhance antigen uptake by immune cells. Here we question whether antigen incorporation with the nanoparticle is actually necessary to boost vaccine effectiveness.
View Article and Find Full Text PDFVirus-like particle (VLP) technology seeks to harness the optimally tuned immunostimulatory properties of natural viruses while omitting the infectious trait. VLPs that assemble from a single protein have been shown to be safe and highly efficacious in humans, and highly profitable. VLPs emerging from basic research possess varying levels of complexity and comprise single or multiple proteins, with or without a lipid membrane.
View Article and Find Full Text PDFEffective and low-cost vaccines are essential to control severe group A streptococcus (GAS) infections prevalent in low-income nations and the Australian aboriginal communities. Highly diverse and endemic circulating GAS strains mandate broad-coverage and customized vaccines. This study describes an approach to deliver cross-reactive antigens from endemic GAS strains using modular virus-like particle (VLP) and capsomere systems.
View Article and Find Full Text PDFBiomolecular engineering enables synthesis of improved proteins through synergistic fusion of modules from unrelated biomolecules. Modularization of peptide antigen from an unrelated pathogen for presentation on a modular virus-like particle (VLP) represents a new and promising approach to synthesize safe and efficacious vaccines. Addressing a key knowledge gap in modular VLP engineering, this study investigates the underlying fundamentals affecting the ability of induced antibodies to recognize the native pathogen.
View Article and Find Full Text PDFVirus-like particles (VLPs) are non-infectious and immunogenic virus-mimicking protein assemblies that are increasingly researched as vaccine candidates. Stability against aggregation is an important determinant dictating the viability of a pipeline VLP product, making multivariable stability data highly desirable especially in early product development stages. However, comprehensive formulation studies are challenging due to low sample availability early in developability assessment.
View Article and Find Full Text PDFVirus-like particles (VLPs) are highly organized nanoparticles that have great potential in vaccinology, gene therapy, drug delivery, and materials science. However, the application of VLPs is hindered by obstacles in their design and production due to low efficiency of self-assembly. In the present study, all-atom (AA) molecular dynamics (MD) simulations coupled with the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method are utilized to examine the molecular interactions in the capsomere of a murine polyomavirus (MPV) VLP.
View Article and Find Full Text PDFModularization of a peptide antigen for presentation on a microbially synthesized murine polyomavirus (MuPyV) virus-like particle (VLP) offers a new alternative for rapid and low-cost vaccine delivery at a global scale. In this approach, heterologous modules containing peptide antigenic elements are fused to and displayed on the VLP carrier, allowing enhancement of peptide immunogenicity via ordered and densely repeated presentation of the modules. This study addresses two key engineering questions pertaining to this platform, exploring the effects of (i) pre-existing carrier-specific immunity on modular VLP vaccine effectiveness and (ii) increase in the antigenic element number per VLP on peptide-specific immune response.
View Article and Find Full Text PDFGroup A streptococcus (GAS) causes a wide range of diseases, some of them related to autoimmune diseases triggered by repeated GAS infections. Despite the fact that GAS primarily colonizes the mucosal epithelium of the pharynx, the main mechanism of action of most vaccine candidates is based on development of systemic antibodies that do not cross-react with host tissues, neglecting the induction of mucosal immunity that could potentially block disease transmission. Peptide antigens from GAS M-surface protein can confer protection against infection; however, translation of such peptides into immunogenic mucosal vaccines that can be easily manufactured remains a challenge.
View Article and Find Full Text PDFNanotechnology promises new drug carriers that can be tailored to specific applications. Here we report a new approach to drug delivery based on tailorable nanocarrier emulsions (TNEs), motivated by a need to co-deliver a protein antigen and a lipophilic drug for specific inhibition of nuclear factor kappa B (NF-κB) in antigen presenting cells (APCs). Co-delivery for NF-κB inhibition holds promise as a strategy for the treatment of rheumatoid arthritis.
View Article and Find Full Text PDFRefolding enables bioprocesses predicated on proteins expressed as inclusion bodies in Escherichia coli. Optimization of size-exclusion chromatography (SEC) refolding is a significant challenge because a wide range of factors, including the choice of gel media, the column dimensions and configuration, affect the final yield in a protein-specific manner. In this study, we investigated these factors by relating them to dispersive mixing and partitioning of refolding molecules within the SEC pore structure.
View Article and Find Full Text PDFStudies on a platform technology able to deliver low-cost viral capsomeres and virus-like particles are described. The technology involves expression of the VP1 structural protein from murine polyomavirus (MuPyV) in Escherichia coli, followed by purification using scaleable units and optional cell-free VLP assembly. Two insertion sites on the surface of MuPyV VP1 are exploited for the presentation of the M2e antigen from influenza and the J8 peptide from Group A Streptococcus (GAS).
View Article and Find Full Text PDFUnderstanding and controlling aggregation is an essential aspect in the development of pharmaceutical proteins to improve product yield, potency and quality consistency. Even a minute quantity of aggregates may be reactogenic and can render the final product unusable. Self-assembly processing of virus-like particles (VLPs) is an efficient method to quicken the delivery of safe and efficacious vaccines to the market at low cost.
View Article and Find Full Text PDFViral self-assembly is of tremendous virological and biomedical importance. Although theoretical and crystallographic considerations suggest that controlled conformational change is a fundamental regulatory mechanism in viral assembly, direct proof that switching alters the thermodynamic attraction of self-assembling components has not been provided. Using the VP1 protein of polyomavirus, we report a new method to quantitatively measure molecular interactions under conditions of rapid protein self-assembly.
View Article and Find Full Text PDFPharmaceutically relevant virus-like particles (VLPs) can potentially be manufactured cheaply and efficiently through in vitro assembly of viral structural protein in cell-free reactors, but a bottleneck for this processing route is the currently low-level expression of soluble viral protein in efficient cell factories such as Escherichia coli (E. coli). Here, we report expression levels of up to 180 mg L(-1) that are achievable from low-cell-density E.
View Article and Find Full Text PDFAsymmetric flow field-flow fractionation (AFFFF) coupled with multiple-angle light scattering (MALS) is a powerful technique showing potential for the analysis of pharmaceutically-relevant virus-like particles (VLPs). A lack of published methods, and concerns that membrane adsorption during sample fractionation may cause sample aggregation, have limited widespread acceptance. Here we report a reliable optimized method for VLP analysis using AFFFF-MALS, and benchmark it against dynamic light scattering (DLS) and transmission electron microscopy (TEM).
View Article and Find Full Text PDF