A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
View Article and Find Full Text PDFIn the version of this paper originally published, the structure for epinephrine shown in Figure 1a was redrawn with an extra carbon. The structure has been replaced in the HTML and PDF versions of the article. The original and corrected versions of the structure are shown below.
View Article and Find Full Text PDFSalmeterol is a partial agonist for the β adrenergic receptor (βAR) and the first long-acting βAR agonist to be widely used clinically for the treatment of asthma and chronic obstructive pulmonary disease. Salmeterol's safety and mechanism of action have both been controversial. To understand its unusual pharmacological action and partial agonism, we obtained the crystal structure of salmeterol-bound βAR in complex with an active-state-stabilizing nanobody.
View Article and Find Full Text PDFThe recent increase in the number of X-ray crystal structures of G-protein coupled receptors (GPCRs) has been enabling for structure-based drug design (SBDD) efforts. These structures have revealed that GPCRs are highly dynamic macromolecules whose function is dependent on their intrinsic flexibility. Unfortunately, the use of static structures to understand ligand binding can potentially be misleading, especially in systems with an inherently high degree of conformational flexibility.
View Article and Find Full Text PDFG-protein-coupled receptors (GPCRs) can modulate diverse signaling pathways, often in a ligand-specific manner. The full range of functionally relevant GPCR conformations is poorly understood. Here, we use NMR spectroscopy to characterize the conformational dynamics of the transmembrane core of the β(2)-adrenergic receptor (β(2)AR), a prototypical GPCR.
View Article and Find Full Text PDFA highly crystallizable T4 lysozyme (T4L) was fused to the N-terminus of the β(2) adrenergic receptor (β(2)AR), a G-protein coupled receptor (GPCR) for catecholamines. We demonstrate that the N-terminal fused T4L is sufficiently rigid relative to the receptor to facilitate crystallogenesis without thermostabilizing mutations or the use of a stabilizing antibody, G protein, or protein fused to the 3rd intracellular loop. This approach adds to the protein engineering strategies that enable crystallographic studies of GPCRs alone or in complex with a signaling partner.
View Article and Find Full Text PDFThe enzyme phosphite dehydrogenase (PTDH) catalyzes the NAD(+)-dependent conversion of phosphite to phosphate and represents the first biological catalyst that has been shown to conduct the enzymatic oxidation of phosphorus. Despite investigation for more than a decade into both the mechanism of its unusual reaction and its utility in cofactor regeneration, there has been a lack of any structural data for PTDH. Here we present the cocrystal structure of an engineered thermostable variant of PTDH bound to NAD(+) (1.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) are responsible for the majority of cellular responses to hormones and neurotransmitters as well as the senses of sight, olfaction and taste. The paradigm of GPCR signalling is the activation of a heterotrimeric GTP binding protein (G protein) by an agonist-occupied receptor. The β(2) adrenergic receptor (β(2)AR) activation of Gs, the stimulatory G protein for adenylyl cyclase, has long been a model system for GPCR signalling.
View Article and Find Full Text PDFG-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains.
View Article and Find Full Text PDFThe human pathogen Pseudomonas aeruginosa coordinates the expression of virulence factors using quorum sensing, a signaling cascade triggered by the activation of signal receptors by small-molecule autoinducers. These homoserine lactone autoinducers stabilize their cognate receptors and activate their functions as transcription factors. Because quorum sensing regulates the progression of infection and host immune resistance, significant efforts have been devoted toward the identification of small molecules that disrupt this process.
View Article and Find Full Text PDFThe lipoglycopeptide antibiotics teicoplanin and A40926 have proven efficacy against Gram-positive pathogens. These drugs are distinguished from glycopeptide antibiotics by N-linked long chain acyl-D-glucosamine decorations that contribute to antibacterial efficacy. During the biosynthesis of lipoglycopeptides, tailoring glycosyltransferases attach an N-acetyl-D-glucosamine to the aglycone, and this N-acetyl-glucosaminyl pseudoaglycone is deacetylated prior to long chain hydrocarbon attachment.
View Article and Find Full Text PDFDiversity in the polysaccharide component of lipopolysaccharide (LPS) contributes to the persistence and pathogenesis of Gram-negative bacteria. The Nudix hydrolase GDP-mannose mannosyl hydrolase (Gmm) contributes to this diversity by regulating the concentration of mannose in LPS biosynthetic pathways. Here, we present seven high-resolution crystal structures of Gmm from the enteropathogenic E.
View Article and Find Full Text PDF