Publications by authors named "Yaoxin Gao"

Autologous chimeric antigen receptor (CAR)-modified T (CAR-T) cell therapy has displayed high efficacy in the treatment of hematological malignancies. Up to now, 11 autologous CAR-T cell products have been approved for the management of malignancies globally. However, the application of autologous CAR-T cell therapy has many individual limitations, long time-consuming, highly cost, and the risk of manufacturing failure.

View Article and Find Full Text PDF

Skin psoriasis is defined as receiving external stimulation to activate skin dendritic cells (DCs) which can release interleukin 23 (IL-23) to interlink the innate and adaptive immunity as well as induce T helper 17 (Th17) cell differentiation leading to elevated production of interleukin 17 (IL-17) for keratinocytes over production. This autoimmune loop in psoriasis pathogenesis is influenced by G protein-coupled receptor (GPCR) signalling transduction, and in particular, function of adhesion molecule GPR97 in psoriasis endures to be utterly addressed. In this research, our team allocated GPR97 depletion (GPR97), GPR97 conditional depletion on dendritic cell (DC-cKO), and keratin 14-conditional knockout (K14-cKO) mice models to explore the function of GPR97 which influences keratinocytes and skin immunity.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-T cell therapy has shown limited success in patients with solid tumors. Recent in vitro and in vivo data have shown that adrenoceptor beta-2 (ADRB2) is a novel checkpoint receptor that inhibits T cell-mediated anti-tumor responses. To inhibit ADRB2-mediated inhibitory signaling, we downregulated ADRB2 in CAR-T (shβ-CAR-T) cells via RNA interference, assessed different parameters, and compared them with conventional second-generation CAR-T cells.

View Article and Find Full Text PDF

Ferroptosis is an iron-dependent form of cell death that influences cancer immunity. Therapeutic modulation of ferroptosis is considered a potential strategy to enhance the efficacy of other cancer therapies, including immunotherapies such as chimeric antigen receptor (CAR) T-cell therapy. In this study, we demonstrated that IFNκ influenced the induction of ferroptosis.

View Article and Find Full Text PDF

Metal ions play an essential role in regulating the functions of immune cells by transmitting intracellular and extracellular signals in tumor microenvironment (TME). Among these immune cells, we focused on the impact of metal ions on T cells because they can recognize and kill cancer cells and play an important role in immune-based cancer treatment. Metal ions are often used in nanomedicines for tumor immunotherapy.

View Article and Find Full Text PDF

Chimeric antigen receptor T (CAR-T) cell therapy achieved advanced progress in the treatment of hematological tumors. However, the application of CAR-T cell therapy for solid tumors still faces many challenges. Competition with tumor cells for metabolic resources in an already nutrient-poor tumor microenvironment is a major contributing cause to CAR-T cell therapy's low effectiveness.

View Article and Find Full Text PDF

The efficacy of CAR-T cell therapy has been hindered by several factors that are intrinsic to the tumor microenvironment. Many strategies are being employed to overcome these barriers and improve immunotherapies efficacy. Interleukin (IL)- 4 is a cytokine released by tumor cells inside the tumor microenvironment and it can oppose T cell effector functions via engagement with the IL-4 receptor on the surface of T cells.

View Article and Find Full Text PDF

Recent studies suggested that cancer was a risk factor for coronavirus disease 2019 (COVID-19). Toll-like receptor 7 (TLR7), a severe acute respiratory syndrome 2 (SARS-CoV-2) virus's nucleic acid sensor, was discovered to be aberrantly expressed in many types of cancers. However, its expression pattern across cancers and association with COVID-19 (or its causing virus SARS-CoV-2) has not been systematically studied.

View Article and Find Full Text PDF

Background: NK cell is one of innate immune cells and can protect the body from cancer-initiating cells. It has been reported that GPR116 receptor is involved in inflammation and tumors. However, the effect of GPR116 receptor on the NK cells remains largely unclear.

View Article and Find Full Text PDF

Pancreatic carcinoma (PC) is one of the most common malignancies. Chimeric antigen receptor (CAR)-modified T cells has achieved remarkable efficacy in the treatment of hematological malignancies. However, lack of tumor-specific targets and the existence of inhibitory factors limit the function of CAR T cells when treating solid tumors.

View Article and Find Full Text PDF

NK cells are critical innate immune cells that target the tumor cells and cancer-initiating cells and clear viruses by producing cytokines and cytotoxic granules. However, the role of the purinergic receptor P2Y in the NK cells remains largely unknown. In this study, we discovered that the expression of P2Y was decreased upon the activation of the NK cells.

View Article and Find Full Text PDF

Neural cell adhesion molecule (NCAM) is involved in cell multi-directional differentiation, but its role in osteoblast differentiation is still poorly understood. In the present study, we investigated whether and how NCAM regulates osteoblastic differentiation. We found that NCAM silencing inhibited osteoblast differentiation in pre-osteoblastic MC3T3-E1 cells.

View Article and Find Full Text PDF

Osteoarthritis (OA), a degenerative joint disorder, has been reported as the most common cause of disability worldwide. The production of inflammatory cytokines is the main factor in OA. Previous studies have been reported that obeticholic acid (OCA) and OCA derivatives inhibited the release of proinflammatory cytokines in acute liver failure, but they have not been studied in the progression of OA.

View Article and Find Full Text PDF

B cell aplasia caused by "on-target off-tumor" toxicity is one of the clinical side effects during CD19-targeted chimeric antigen receptor (CAR) T (CD19-CAR-T) cells treatment for B cell malignancies. Persistent B cell aplasia was observed in all patients with sustained remission, which increased the patients' risk of infection. Some patients even died due to infection.

View Article and Find Full Text PDF

Chondrocyte hypertrophy-like change is an important pathological process of osteoarthritis (OA), but the mechanism remains largely unknown. Neural cell adhesion molecule (NCAM) is highly expressed and involved in the chondrocyte differentiation of mesenchymal stem cells (MSCs). In this study, we found that NCAM deficiency accelerates chondrocyte hypertrophy in articular cartilage and growth plate of OA mice.

View Article and Find Full Text PDF

Fengshi Gutong capsule (FSGTC), a traditional herbal formula, has been used clinically in China for the treatment of arthritis. However, the mechanism underlying the therapeutic effects of FSGTC on osteoarthritis (OA) has not been elucidated. The present study investigated the function and mechanisms of FSGTC in rat OA model and interleukin (IL)-1β-stimulated synovial cells.

View Article and Find Full Text PDF

Mesenchymal stem cell (MSC) therapy is a promising prospect for the treatment of Alzheimer's disease (AD); however, the underlying mechanisms by which MSCs mediate positive effects are still unclear. We speculated that MSCs mediate microglial autophagy and enhance the clearance of Aβ. To test this hypothesis, we cultured BV2 microglial cells with umbilical cord mesenchymal stem cells conditioned medium (ucMSCs-CM) in the presence or absence of Aβ25-35 oligomers.

View Article and Find Full Text PDF

The present study shows the basis for the anti-inflammatory effects of pitavastatin in interleukin (IL)-1β-induced human synovial cells. The SW982 cells were pretreated with pitavastatin at different concentrations (5μM and 10μM), followed by IL-1β (10ng/mL) stimulation. The results showed that pitavastatin inhibited the expression of inflammatory mediators IL-6 and IL-8.

View Article and Find Full Text PDF

To study the role of oleanolic acid on interleukin (IL)-1β-stimulated expression of inflammatory cytokines, and to explore its anti-inflammatory mechanism in SW982 cells, the toxicity of oleanolic acid on SW982 cells was detected by MTT; effects of different concentrations of oleanolic acid(5, 10, 20 μmol·L(-1)) on the expression of inflammatory factors IL-6, IL-8 and matrix metalloproteinase-1 (MMP-1) was tested at protein and m RNA levels. The study was performed in IL-1β-stimulated SW982 cells together with enzyme-linked immunosorbent assay (ELISA) and real-time fluorescence quantitative PCR (real-time PCR) methods; the influence of oleanolic acid on the phosphorylation of mitogen-activated protein kinase (MAPK), phosphatidyl inositol-3-kinase/Akt (PI3K/Akt) and nuclear transcription factor-κB (NF-κB) signaling pathways related protein was analyzed by Western blot. Results showed that different concentrations of oleanolic acid(≤40 μmol·L(-1)) were almost non-toxicity to SW982 cells; oleanolic acid significantly inhibited the expression of inflammatory factors in a dose-dependent manner; oleanolic acid restrained extracellular signal-related kinase (ERK), p38, c-jun N-terminal kinase (JNK) and Akt protein phosphorylation and IκB-α protein degradation obviously.

View Article and Find Full Text PDF

Hydroxysafflor yellow A (HSYA), the main active ingredient in medical and edible dual purpose plant safflower, is reported to have multiple bioactivities. In the present study, the anti-inflammatory effects of HSYA and the underlying mechanisms were investigated in interleukin (IL)-1β-induced SW982 human synovial cells. The cells were pretreated with HSYA at various concentrations (2.

View Article and Find Full Text PDF