The emission of N lasing at 391 nm from 800 nm femtosecond laser filament in air at 1 atm presents significant challenges due to the quenching effect induced by oxygen molecules. We introduce a simple technique for the 391 nm N lasing emission induced by a corona electric field-assisted femtosecond filament in air. This technique greatly addresses the challenge of exciting a 391 nm lasing from 800 nm femtosecond laser filament in air at 1 atm.
View Article and Find Full Text PDFSupercontinuum (SC) light source has advanced ultrafast laser spectroscopy in condensed matter science, biology, physics, and chemistry. Compared to the frequently used photonic crystal fibers and bulk materials, femtosecond laser filamentation in gases is damage-immune for supercontinuum generation. A bottleneck problem is the strong jitters from filament induced self-heating at kHz repetition rate level.
View Article and Find Full Text PDFWe experimentally investigate the laser polarization effect on the supercontinuum (SC) generation through femtosecond laser filamentation in air. By tuning filamenting laser ellipticity from linear polarization to circular polarization, the spectral intensity of the SC after filamentation gradually increases, while the spectral bandwidth of the SC continuously decreases. The laser ellipticity-dependent spectral intensity modulation of the SC is stronger at higher filamenting pulse energy.
View Article and Find Full Text PDFModulation and direct measurement of the radial fluence distribution inside a single filament core (especially less than 100 μm in diameter) is crucial to filament-based applications. We report direct measurements of the radial fluence distribution inside a femtosecond laser filament core and its evolution via the filament-induced ablation method. The radial fluence distributions were modulated by manipulating the input pulse diffraction through an iris.
View Article and Find Full Text PDFWe report on a method to experimentally generate ionic wind by coupling an external large electric field with an intense femtosecond laser induced air plasma channel. The measured ionic wind velocity could be as strong as >4 m/s. It could be optimized by increasing the strength of the applied electric field and the volume of the laser induced plasma channel.
View Article and Find Full Text PDFWater condensation and precipitation induced by 22-TW 800-nm laser pulses at 1 Hz in an open cloud chamber were investigated in a time-resolved manner. Two parts of precipitation in two independent periods of time were observed directly following each laser shot. One part started around the filament zone at t < 500 μs and ended at t ≅ 1.
View Article and Find Full Text PDFArtificial rainmaking is in strong demand especially in arid regions. Traditional methods of seeding various Cloud Condensation Nuclei (CCN) into the clouds are costly and not environment friendly. Possible solutions based on ionization were proposed more than 100 years ago but there is still a lack of convincing verification or evidence.
View Article and Find Full Text PDFWe present a novel method based on plasma-guided corona discharges to probe the plasma density longitudinal distribution, which is particularly good for the weakly ionized plasmas (~10 cm). With this method, plasma density longitudinal distribution inside both a weakly ionized plasma and a filament were characterized. When a high voltage electric field was applied onto a plasma channel, the original ionization created by a laser pulse would be enhanced and streamer coronas formed along the channel.
View Article and Find Full Text PDFWe investigated water condensation in a laboratory cloud chamber induced by picosecond (ps) laser pulses at ~350 ps (800 nm/1-1000 Hz) with a maximum peak power of ~25 MW. The peak power was much lower than the critical power for self-focusing in air (~3-10 GW depending on the pulse duration). Sparks, airflow and snow formation were observed under different laser energies or repetition rates.
View Article and Find Full Text PDFLaser based lightning control holds a promising way to solve the problem of the long standing disaster of lightning strikes. But it is a challenging project due to insufficient understanding of the interaction between laser plasma channel and high voltage electric filed. In this work, a direct observation of laser guided corona discharge is reported.
View Article and Find Full Text PDF