Objectives: The abnormal anatomical alterations of blood vessels during DSA angiography in patients with hematological disorders were retrospectively examined, and the influencing factors of short-term (≤ 6 months) recurrent hemoptysis were statistically analyzed, and the consistency between admission diagnosis and intraoperative diagnosis was evaluated.
Methods: The intraoperative angiography data of patients who underwent selective bronchial artery embolization for hemoptysis in our hospital from January 2022 to December 2022 were reviewed. They were divided into the observation group and the control group based on whether there was recurrent hemoptysis.
As the pediatric patient with right pulmonary artery agenesis (PAA) matured, she progressively presented symptoms of pulmonary hypertension and hemoptysis. There is limited clinical literature on this condition, and currently, there is no consensus regarding its diagnosis and treatment. This article presents a case study of a 16-year-old female patient with right pulmonary artery hypoplasia, providing a comprehensive summary and analysis of her developmental progression, pathology, diagnosis, and treatment.
View Article and Find Full Text PDFPurpose: The aim of this study was to elucidate the factors associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that may initiate cytokine cascades and correlate the clinical characteristics of patients with coronavirus disease 2019 (COVID-19) with their serum cytokine profiles.
Methods: Recombinant baculoviruses displaying SARS-CoV-2 spike or nucleocapsid protein were constructed and transfected into A549 cells and THP-1-derived macrophages, to determine which protein initiate cytokine release. SARS-CoV-2-specific antibody titers and cytokine profiles of patients with COVID-19 were determined, and the results were associated with their clinical characteristics, such as development of pneumonia or length of hospital stay.
Background: Eustachian tube dysfunction (ETD) is a common disorder causing ear pressure, pain, and hearing loss. Balloon Eustachian tuboplasty (BET) is an emerging technique for dilating the Eustachian tube and treating ETD. Whether adding myringotomy improves BET efficacy is controversial.
View Article and Find Full Text PDFStrategies to increase intratumoral concentrations of an anticancer agent are desirable to optimize its therapeutic potential when said agent is efficacious primarily within a tumor but also have significant systemic side effects. Here, we generate a bifunctional protein by fusing interleukin-10 (IL-10) to a colony-stimulating factor-1 receptor (CSF-1R)-blocking antibody. The fusion protein demonstrates significant antitumor activity in multiple cancer models, especially head and neck cancer.
View Article and Find Full Text PDFBackground: The aminoglycosides are established antibiotics that inhibit bacterial protein synthesis by binding to ribosomal RNA. Additional non-antibiotic aminoglycoside cellular functions have also been identified through aminoglycoside interactions with cellular RNAs. The full extent, however, of genome-wide aminoglycoside RNA interactions in Escherichia coli has not been determined.
View Article and Find Full Text PDFSystemic chemotherapy after surgery is necessary to control tumor recurrence, but the severe side effects caused by chemotherapeutic drugs pose a great threat to patients' health. In this study, we originally develop a porous scaffold used for chemotherapy drug capture by using 3D printing technology. The scaffold is mainly composed of poly (ε-caprolactone) (PCL) and polyetherimide (PEI) with a mass ratio of 5/1.
View Article and Find Full Text PDFNumerous reports indicate that enhanced expression of Y-box binding protein-1 (YB-1) in tumor cells is strongly associated with tumorigenesis, aggressiveness, drug resistance, as well as poor prognosis in several types of cancers, and YB-1 is considered to be an oncogene. The molecular mechanism contributing to the regulation of the biological activities of YB-1 remains obscure. Sumoylation, a post-translational modification involving the covalent conjugation of small ubiquitin-like modifier (SUMO) proteins to a target protein, plays key roles in the modulation of protein functions.
View Article and Find Full Text PDFFungal hydroxylation of steroids is a key step in the industrial production of various steroid drugs. The main enzymes that enable these reactions are Cytochrome P450s (CYP), though very few industrially important CYPs have been identified and characterized. In this study, we identified a CYP enzyme (CYP-N2) and a cytochrome P450 reductase (CPRns) from Nigrospora sphaerica 722 by a combination of transcriptome sequencing and heterologous expression in Pichia pastoris.
View Article and Find Full Text PDFAminoglycosides are not only antibiotics but also have wider and diverse non-antibiotic cellular functions. To elucidate the understanding of non-antibiotic cellular functions, here we report transcriptome-profiling analysis of in the absence or presence of 0.5 and 1 μM of Kanamycin B, concentrations that are neither lethal nor inhibit growth, and identified the differentially expressed genes (DEGs) at two given concentrations of Kanamycin B.
View Article and Find Full Text PDFEpithelial cells usually trigger their "migratory machinery" upon loss of adhesion to their neighbors. This default is important for both physiological (e.g.
View Article and Find Full Text PDFIn this work, we present a theoretical method to study the effect of magnetic field on trions in two-dimensional materials. The trion is modeled by a three-particle Schrödinger equation and the magnetic-field interaction is included by means of a vector potential in symmetric gauge. By using a coordinate transformation and a unitary transformation, the trion Hamiltonian can be converted into the sum of a translational term describing the Landau quantization for the trion center-of-mass motion, an internal term describing the trion binding, and a translational-internal coupling term depending linearly on the magnetic-field strength.
View Article and Find Full Text PDFEpitaxial growth is of significant importance over the past decades, given it has been the key process of modern technology for delivering high-quality thin films. For conventional heteroepitaxy, the selection of proper single crystal substrates not only facilitates the integration of different materials but also fulfills interface and strain engineering upon a wide spectrum of functionalities. Nevertheless, the lattice structure, regularity and crystalline orientation are determined once a specific substrate is chosen.
View Article and Find Full Text PDFStrontium titanate (STO), with a wide spectrum of emergent properties such as ferroelectricity and superconductivity, has received significant attention in the community of strongly correlated materials. In the strain-free STO film grown on the SrRuO buffer layer, the existing polar nanoregions can facilitate room-temperature ferroelectricity when the STO film thickness approaches 10 nm. Here we show that around this thickness scale, the freestanding STO films without the influence of a substrate show the tetragonal structure at room temperature, contrasting with the cubic structure seen in bulk form.
View Article and Find Full Text PDFIn this work, trions in two-dimensional (2D) space are studied by the variational method with trial wavefunctions being constructed by 2D slater-type orbitals. Via this method, trion energy levels and wavefunctions can be calculated efficiently with fairly good accuracy. We first apply this method to study trion energy levels in a 2D hydrogen-like system with respect to a wide range of mass ratios and screening lengths.
View Article and Find Full Text PDFWe have successfully fabricated high quality single crystalline LaSrMnO (LSMO) film in the freestanding form that can be transferred onto silicon wafer and copper mesh support. Using soft x-ray absorption (XAS) and resonant inelastic x-ray scattering (RIXS) spectroscopy in transmission and reflection geometries, we demonstrate that the x-ray emission from Mn 3s-2p core-to-core transition (3sPFY) seen in the RIXS maps can represent the bulk-like absorption signal with minimal self-absorption effect around the Mn L-edge. Similar measurements were also performed on a reference LSMO film grown on the SrTiO substrate and the agreement between measurements substantiates the claim that the bulk electronic structures can be preserved even after the freestanding treatment process.
View Article and Find Full Text PDFThe proliferation of antibiotic resistance has its origins in horizontal gene transfer. The class 1 integrons mediate gene transfer by assimilating antibiotic-resistance genes through site-specific recombination. For the class 1 integrons the first assimilated gene normally encodes an aminoglycoside antibiotic resistance protein which is either an aminoglycoside acetyltransferase (AAC), nucleotidyltransferase - (ANT), or adenyl transferase (AAD).
View Article and Find Full Text PDFResearchers have long been seeking multifunctional materials that can be adopted for next-generation nanoelectronics, and which, hopefully, are compatible with current semiconductor processing for further integration. Along this vein, complex oxides have gained numerous attention due to their versatile functionalities. Despite the fact that unbounded potential of complex oxides has been examined over the past years, one of the major challenges lies in the direct integration of these functional oxides onto existing devices or targeted substrates that are inherently incompatible in terms of oxide growth.
View Article and Find Full Text PDFProgesterone 5β-reductases (P5βRs) are involved in 5β-cardenolide formation by stereo-specific reduction of the △ double bond of steroid precursors. In this study a steroid 5β-reductase was identified in Capsella rubella (CrSt5βR1) and its function in steroid 5β-reduction was validated experimentally. CrSt5βR1 is capable of enantioselectively reducing the activated CC bond of broad substrates such as steroids and enones by using NADPH as a cofactor and therefore has the potential as a biocatalyst in organic synthesis.
View Article and Find Full Text PDFTumor cell-induced platelet aggregation (TCIPA) is a mechanism that involves the protection of tumor cells in the circulation and the promotion of tumor cell invasion and metastases. The C-type lectin-like receptor 2 (CLEC-2) that binds podoplanin (PDPN) is on the platelet surface and facilitates the TCIPA. Selective blockage of the PDPN-mediated platelet-tumor cell interaction is thereby a plausible strategy for inhibiting metastases.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are considered to be critical mediators of gene expression with respect to tumor progression, although their role in ischemia‑induced angiogenesis is poorly characterized, including in peripheral arterial disease (PAD). Furthermore, the underlying mechanism of action of specific miRNAs in PAD remains unknown. Reverse transcription‑quantitative polymerase chain reaction analysis revealed that microRNA‑93 (miR‑93) was significantly upregulated in patients with PAD and in the EA.
View Article and Find Full Text PDFClass 1 integrons accumulate antibiotic resistance genes by site-specific recombination at sites. Captured genes are transcribed from a promoter located within the integron; for class 1 integrons, the first gene to be transcribed and translated normally encodes an aminoglycoside antibiotic resistance protein (either an acetyltransferase [AAC] or adenyltransferase [AAD]). The leader RNA from the class 1 integron contains an aminoglycoside-sensing riboswitch RNA that controls the expression of the downstream aminoglycoside resistance gene.
View Article and Find Full Text PDF