Acid orange II (AO II), a typical azo pigment, is strictly controlled by legislation and prohibited in foodstuffs. Herein, we prepared gold nanoparticles decorated amino-functionalized Cr-based metal-organic frameworks [NH-MIL-101(Cr)@Au] via an in-situ reduction method as a surface-enhanced Raman scattering (SERS) substrate for simultaneous adsorption and detection of AO II. Gold nanoparticles are uniformly dispersed on the surface of NH-MIL-101(Cr) owing to its three-dimensional (3D) structure and the interaction between -NH and Au ions, providing more SERS-active "hot spots".
View Article and Find Full Text PDFVarious pesticides employed in modern agriculture result in large amounts of pesticide residues in agricultural production, greatly threatening human health. Herein, we report a facile approach to fabricate a reduced graphene oxide/cyclodextrin modified glassy carbon electrode (rGO/CD/GCE) for the sensitive electrochemical sensing of imidacloprid (IDP). Three different modified electrodes using CDs (α-, β-, γ-CD) were fabricated, and their electrochemical performance was further studied.
View Article and Find Full Text PDFThree-dimensional carbon-based porous materials have proven to be quite useful for tailoring material properties in the energy conservation and environmental protection applications. In view of the three-dimensional and well-defined structure of metal-organic frameworks (MOFs), a novel carbon-based magnetic porous material (HKUST-FeO) has been designed and constructed by MOF-guest interactions of high-temperature pyrolysis. The obtained HKUST-FeO exhibited the unique features of superparamagnetism, a macro/mesoporous structure, environmental protection (inexistence of toxic heavy metal ions), and physicochemical stability and has shown high adsorption capacity and rapid adsorption for carcinogenic organic pollutants (for example, rhodamine B) with an environmentally friendly character and excellent reusability.
View Article and Find Full Text PDFJ Colloid Interface Sci
October 2019
Developing a facile method to fabricate new heterogeneous Metal-Organic Framework (MOFs) based catalysts with high catalytic activity and stability has drawn significant attention. Herein, we demonstrate a simple in-situ pyrolysis reduction strategy to fabricate a novel three-dimensional (3D) Cu-based catalyst, which displays an outstanding performance for the decomposition of 4-nitrophenol (4-NP). Detailed characterization including SEM, FTIR, XPS, ICP-OES, HRTEM, SAED, XRD and BET confirmed the formation of the Cu/C porous composites (Cu/C-PC).
View Article and Find Full Text PDFIn the present work, highly sensitive Raman detection of nitenpyram using superhydrophobic filter paper as substrates is introduced. The process is simple, and efficient. By sequentially coating silver dendrites and Octyltrimethoxysilane (OTMOS) on filter paper, we produced highly active surface-enhanced Raman scattering (SERS) substrates which show advancing and receding water contact angles of θ/θ = 159°/156°.
View Article and Find Full Text PDFThis paper reports on two important results regarding the precipitation polymerization of poly(divinylbenzene) (PDVB) in acetic acid (HAc). (1) Acetic acid is a novel kind of solvent worthy of investigation because it is amphipathic and innoxious. Thus, two kinds of model solvents, methyl ethyl ketone (MEK) and n-heptane, were selected to investigate the solvent effect on the particle morphology of PDVB-55 during precipitation polymerization in acetic acid.
View Article and Find Full Text PDFA novel dispersion polymerization system, with a methanol/water (MeOH/H2O) mixture as reaction medium and a polymerizable dimethylaminomethacrylate methyl chloride (DMC) as stabilizer was developed. By monitoring the polymerization evolution and observing the morphological changes of the polystyrene (PS) particles by SEM, it was found that this system had the following unique features: (1) a much lower amount of DMC (0.025 mass% based on styrene as opposed to 5 mass% for a routine system) was required to prepare monodisperse and stable PS particles; (2) the rate of polymerization was fast and the conversion was very high; (3) the monodisperse particles with average diameters of approximately 200-1600 nm could be directly obtained.
View Article and Find Full Text PDFThis paper reports two important results with cross-linked precipitation polymerization. (1) Acetonitrile, a substance harmful to human health, is the most commonly used solvent for the synthesis of cross-linked polymeric microspheres by precipitation polymerization. Here, the much safer acetic acid replaced acetonitrile as a solvent in the precipitation polymerization of monodisperse cross-linked poly(divinylbenzene) (PDVB-55) microspheres.
View Article and Find Full Text PDFA new, practical approach to a variety of highly electrooptically active polymers for device development is described. It involves the use of a new thermally cross-linkable, hyperbranched oligomer containing nonlinear optical (NLO) chromophores as a macromolecular dopant in a common host polymer. A series of NLO polymeric blends were readily formulated and showed large and stable electrooptic (EO) coefficients (up to 65 pm/V).
View Article and Find Full Text PDF