Publications by authors named "Yaowared Sumanont"

This study aimed to investigate the mechanism underlying the protective effects of manganese complexes of curcumin (Cp-Mn) and diacetylcurcumin (DiAc-Cp-Mn) on kainic acid (KA)-induced excitotoxicity in the rat hippocampus. Systemic injection of KA (10 mg/kg, i.p.

View Article and Find Full Text PDF

Curcumin is a natural antioxidant isolated from the medicinal plant Curcuma longa Linn. We previously reported that manganese complexes of curcumin (Cp-Mn) and diacetylcurcumin (DiAc-Cp-Mn) exhibited potent superoxide dismutase (SOD)-like activity in an in vitro assay. Nitric oxide (NO) is a free radial playing a multifaceted role in the brain and its excessive production is known to induce neurotoxicity.

View Article and Find Full Text PDF

Curcumin manganese complex (CpCpx) and diacetylcurcumin manganese complex (AcylCpCpx) were determined as to their effect on the nitric oxide (NO) radical scavenging in vitro method using a sodium nitroprusside generating NO system compared with their parent compound and astaxanthin, an extreme antioxidant. All compounds effectively reduced the generation of NO radicals in a dose dependent manner. They exhibited strong NO radical scavenging activity with low IC(50) values.

View Article and Find Full Text PDF

In this study, three manganese complexes of curcumin (Cp) and related compounds, diacetylcurcumin (AcylCp) and ethylenediamine derivative (CpED), were synthesized and evaluated in vitro for antilipid peroxidation and superoxide dismutase activity. The manganese complexes exhibited a great capacity to protect brain lipids against peroxidation with IC50 of 6.3-26.

View Article and Find Full Text PDF

Manganese was incorporated in the structure of the selected antioxidants to mimic the superoxide dismutase (SOD) and to increase radical scavenging ability. Five manganese complexes (1-5) showed potent SOD activity in vitro with IC(50) of 1.18-1.

View Article and Find Full Text PDF