Publications by authors named "Yaou Peng"

Clinical guidelines for infectious keratitis treatment require that anti-inflammatory drugs can only be used after infection elimination, which causes irreversible inflammatory damage to the cornea. In this work, photodynamic metal organic frameworks (PCN-224) were used as drug carrier to load Pt NPs with catalase-like activity and anti-inflammatory drug (Dexamethasone, DXMS) for endogenous oxygen generation and reduced corneal damage, respectively. The photodynamic therapy (PDT) effect was greatly enhanced in bacteria elimination and bacterial biofilms removal through catalysis of overexpressed hydrogen peroxide (HO, ∼8.

View Article and Find Full Text PDF

Contact lenses (CLs) are prone to adhesion and invasion by pollutants and pathogenic bacteria, leading to infection and inflammatory diseases. However, the functionalization of CL (biological functions such as anti-fouling, antibacterial, and anti-inflammatory) and maintaining its transparency still face great challenges. In this work, as a member of the MXenes family, vanadium carbide (VC) is modified onto CL via a water transfer printing method after the formation of a tightly arranged uniform film at the water surface under the action of the Marangoni effect.

View Article and Find Full Text PDF

Low-temperature photothermal therapy (PTT) systems constructed by integrating organic photothermal agents with other bactericidal components that initiate bacterial apoptosis at low hyperthermia possess a promising prospect. However, these multicomponent low-temperature PTT nanoplatforms have drawbacks in terms of the tedious construction process, suboptimal synergy effect of diverse antibacterial therapies, and high laser dose needed, compromising their biosafety in ocular bacterial infection treatment. Herein, a mild PTT nanotherapeutic platform is formulated the self-assembly of a pH-responsive phenothiazinium dye.

View Article and Find Full Text PDF

Stubborn resistant bacteria, bacterial biofilms and severe inflammation are challenging issues in refractory keratitis treatment. Herein, we design a multifunctional near-infrared light-responsive nanoplatform for efficient therapy of refractory keratitis based on a "three-birds-with-one-stone" strategy, which integrates the bacteria targeting photodynamic therapy, nitric oxide (NO) sterilization, and NO-mediated anti-inflammatory property into one system. This nanoplatform (UCNANs) is constructed using the dual-emissive upconversion nanoparticles (UCNPs) as cores coated with mesoporous silica for the loading of photosensitizers with aggregation-induced emission (AIE) property and the grafting of NO donors and bacteria targeting molecules.

View Article and Find Full Text PDF

Bacterial keratitis (BK) and related inflammatory diseases causes irreversible damage to the corneal tissue. In this study, a novel polyacrylamide semi-interpenetrating network hydrogel including quaternized chitosan and tannic acid (PAM-QCS-TA) were used to construct a novel antibacterial and antioxidant contact lens. The obtained hydrogels showed high water content (>85%), swelling resistance, light transmittance (>90%) and adjustable mechanical property.

View Article and Find Full Text PDF