Asymmetry is a natural characteristic of Parkinson's disease (PD), which can be used to distinguish PD from atypical parkinsonism. Chemical exchange saturation transfer (CEST) has demonstrated value in reflecting the subtle changes related to neuron loss and abnormal protein accumulation in PD but has not been used to investigate asymmetry in PD. This study aimed to examine asymmetrical changes in the mesencephalic nucleus of PD patients with motor asymmetry using four-pool CEST analysis and to explore the relationship between imaging asymmetry and motor asymmetry.
View Article and Find Full Text PDFPurpose: Amide proton transfer (APT) imaging has shown its diagnostic and predictive superiority in Parkinson's disease (PD) in our previous studies using 2D APT imaging based on deep nuclei. We hypothesized that the pathophysiological abnormality of PD will change the APT-related parameters in the cerebral cortex, and the signal changes can contribute to accurate diagnosis of PD.
Methods: 34 patients with idiopathic Parkinson's disease (IPD) and 29 age- and sex-matched normal controls (NC) were enrolled in this prospective study.
Purpose: To confirm the ability of native T1 and T2 values in detecting and monitoring early myocardial injuries of chest radiotherapy in neoplasm patients.
Materials And Methods: Fifteen participants received non-anthracycline chemotherapy and chest radiotherapy, and 30 age/gender-matched controls were enrolled in this prospective study. Cardiac magnetic resonance scans were performed within 2 days, 3 months, and 6 months after chest radiotherapy.
Introduction: Alzheimer's disease (AD) is the most common type of dementia, and there is growing evidence suggesting that ferroptosis is involved in its pathogenesis. In this study, we aimed to investigate the key ferroptosis-related genes in AD and identify a novel ferroptosis-related gene diagnosis model for patients with AD.
Materials And Methods: We extracted the human blood and hippocampus gene expression data of five datasets (GSE63060, GSE63061, GSE97760, GSE48350, and GSE5281) in the Gene Expression Omnibus database as well as the ferroptosis-related genes from FerrDb.