Density-functional theory (DFT) has become an extensively and successfully used tool in the studies of molecules and materials. However, DFT remains computationally expensive, especially for exploring the conformational space of molecular systems comprising a few hundred atoms. Here, we present a Reduced Approach to Density-functional Expansion (RADE), devised to substantially reduce the computational cost of standard DFT methods.
View Article and Find Full Text PDFCovalent kinase inhibitors (CKIs) have recently garnered considerable attention, yet the rational design of CKIs continues to pose a great challenge. In the discovery of CKIs targeting focal adhesion kinase (FAK), it has been observed that the chemical structure of the linkers plays a key role in achieving covalent targeting of FAK. However, the mechanism behind the observation remains elusive.
View Article and Find Full Text PDFGaussian accelerated molecular dynamics (GaMD) is recognized as a popular enhanced sampling method for tackling long-standing challenges in biomolecular simulations. Inspired by GaMD, Sigmoid accelerated molecular dynamics (SaMD) is proposed in this work by adding a Sigmoid boost potential to improve the balance between the highest acceleration and accurate reweighting. Compared with GaMD, SaMD extends the accessible time scale and improves the computational efficiency as tested in three tasks.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2023
Robust protein-nanomaterial surface analysis is important, but also a challenge. Thrombin plays an important role in the coagulant activity of protein corona mediated by Ca ion exchanged zeolites. However, the mechanism for this modulation remains unresolved.
View Article and Find Full Text PDFComput Struct Biotechnol J
September 2022
Prothrombin is a key zymogen of the coagulation process and can be converted to thrombin by the prothrombinase complex, which consists of factor Xa (FXa), cofactor Va (FVa), and phospholipids. Prothrombin can be activated at two cleavage sites, R271 and R320, which generates two intermediates: prethrombin-2 via the initial cleavage at R271, and meizothrombin via the first cleavage at R320. Several mechanisms have been proposed to explain this activation preference, but the role of cleavage site sequences in prothrombin activation has not been thoroughly investigated.
View Article and Find Full Text PDFFree fatty acid receptor 1 (FFAR1) is a potential therapeutic target for the treatment of type 2 diabetes (T2D). It has been validated that agonists targeting FFAR1 can achieve the initial therapeutic endpoints of T2D, and the epimer agonists (,) AM-8596 can activate FFAR1 differently, with one acting as a partial agonist and the other as a full agonist. Up to now, the origin of the stereoselectivity of FFAR1 agonists remains elusive.
View Article and Find Full Text PDFThe homo-pentameric alpha 7 receptor is one of the major types of neuronal nicotinic acetylcholine receptors (α7-nAChRs) related to cognition, memory formation, and attention processing. The mapping of α7-nAChRs by PET pulls a lot of attention to realize the mechanism and development of CNS diseases such as AD, PD, and schizophrenia. Several PET radioligands have been explored for the detection of the α7-nAChR.
View Article and Find Full Text PDFHuman cytochrome P450 3A4 (CYP3A4) is responsible for the metabolism of ∼50% clinically used drugs. Midazolam (MDZ) is a commonly used sedative drug and serves as a marker substrate for the CYP3A4 activity assessment. MDZ is metabolized by CYP3A4 to two hydroxylation products, 1'-OH-MDZ and 4-OH-MDZ.
View Article and Find Full Text PDFThe α7 nicotinic acetylcholine receptor (α7-nAChR) is implicated in a variety of neurodegenerative and neuropsychiatric disorders, such as Alzheimer's disease (AD) and schizophrenia. The progress of these disorders can be studied using positron emission tomography (PET) with radiotracers for α7-nAChR. [F]ASEM and [F] -ASEM (also referred to as [F]DBT-10) are novel and potent α7-nAChR PET radiotracers which have successfully been used in human subjects and nonhuman primates, though further improvement of them is still a pressing task in the community of neurodegeneration research.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2021
Understanding of drug-carrier interactions is essential for the design and application of metal-organic framework (MOF)-based drug-delivery systems, and such drug-carrier interactions can be fundamentally different for MOFs with or without defects. Herein, we reveal that the defects in MOFs play a key role in the loading of many pharmaceuticals with phosphate or phosphonate groups. The host-guest interaction is dominated by the Coulombic attraction between phosphate/phosphonate groups and defect sites, and it strongly enhances the loading capacity.
View Article and Find Full Text PDFThe plasticity of cytochromes P450 (P450s) is known to contribute significantly to their catalytic capacity of metabolizing various substrates. Although numerous studies have been performed, factors governing the plasticity and dynamics of P450s are still not fully understood. In this study, taking CYP2B4 as an example, we dissect the protein plasticity and dynamics in different environments.
View Article and Find Full Text PDFIntrinsically disordered proteins (IDPs) exert their functions by binding to partner proteins via a complex process that includes coupled folding and binding. Because inhibiting the binding of the IDP p53 to its partner MDM2 has become a promising strategy for the design of anticancer drugs, we carried out metadynamics simulations to study the coupled folding and binding process linking the IDP p53 to MDM2 in atomic detail. Using bias-exchange metadynamics (BE-MetaD) and infrequent metadynamics (InMetaD), we estimated the binding free energy, the unbinding rate, and the binding rate.
View Article and Find Full Text PDFThe hydroxylation of nonreactive C-H bonds can be easily catalyzed by a variety of metalloenzymes, especially cytochrome P450s (P450s). The mechanism of P450 mediated hydroxylation has been intensively studied, both experimentally and theoretically. However, understanding the regio- and stereoselectivities of substrates hydroxylated by P450s remains a great challenge.
View Article and Find Full Text PDFUnderstanding unbinding kinetics of protein-ligand systems is of great importance for the design of ligands with desired specificity and safety. In recent years, enhanced sampling techniques have emerged as effective tools for studying unbinding kinetics of protein-ligand systems at the atomistic level. However, in many protein-ligand systems, the ligand unbinding processes are strongly coupled to protein conformational changes and the disclosure of the hidden degrees of freedom closely related to the protein conformational changes so that sampling is enhanced over these degrees of freedom remains a great challenge.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) are porous crystalline materials with promising applications in molecular adsorption, separation, and catalysis. It has been discovered recently that structural defects introduced unintentionally or by design could have a significant impact on their properties. However, the exact chemical composition and structural evolution under different conditions at the defects are still under debate.
View Article and Find Full Text PDFThe amyloid β (Aβ) fibril is a hallmark of Alzheimer's disease (AD) and has therefore served as an important target for early diagnosis of AD. The Pittsburgh Compound-B (PiB) is one of the most famous positron emission tomography (PET) tracers commonly used for in vivo detection of Aβ fibrils. Many theoretical studies have predicted the existence of various core binding sites with different microenvironments for probes binding to the Aβ fibril.
View Article and Find Full Text PDFFront Pharmacol
September 2018
Vitamin K (VK1) plays an important role in the modulation of bleeding disorders. It has been reported that ω-hydroxylation on the VK1 aliphatic chain is catalyzed by cytochrome P450 4F2 (CYP4F2), an enzyme responsible for the metabolism of eicosanoids. However, the mechanism of VK1 ω-hydroxylation by CYP4F2 has not been disclosed.
View Article and Find Full Text PDFATAD2 has emerged as a promising bromodomain (BRD)-containing therapeutic drug target in multiple human cancers. However, recent druggability assessment studies predicted ATAD2's BRD as a target 'difficult to drug' because its binding pocket possesses structural features that are unfeasible for ligand binding. Here, by using all-atom molecular dynamics simulations and an advanced metadynamics method, we demonstrate a dynamic view of the binding pocket features which can hardly be obtained from the "static" crystal data.
View Article and Find Full Text PDFInfluenza pandemic is a constant major threat to public health caused by influenza A viruses (IAVs). IAVs are subcategorized by the surface proteins hemagglutinin (HA) and neuraminidase (NA), in which they are both essential targets for drug discovery. While it is of great concern that NA inhibitor oseltamivir resistant strains are frequently identified from human or avian influenza virus, structural and functional characterization of influenza HA has raised hopes for new antiviral therapies.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) are a promising alternative to antibiotics for mitigating bacterial infections, in light of increasing bacterial resistance to antibiotics. However, predicting, understanding, and controlling the antibacterial activity of AMPs remain a significant challenge. While peptide intramolecular interactions are known to modulate AMP antimicrobial activity, peptide intermolecular interactions remain elusive in their impact on peptide bioactivity.
View Article and Find Full Text PDFPeptide drugs have been difficult to translate into effective therapies due to their low stability. Here, we report a strategy to develop peptide-based therapeutic nanoparticles by screening a peptide library differing by single-site amino acid mutations of lysine-modified cholesterol. Certain cholesterol-modified peptides are found to promote and stabilize peptide α-helix formation, resulting in selectively cell-permeable peptides.
View Article and Find Full Text PDFExpert Opin Ther Targets
January 2018
ATAD2 protein is an emerging oncogene that has strongly been linked to the etiology of multiple advanced human cancers. Therapeutically, despite the fact that genetic suppression/knockdown studies have validated it as a compelling drug target for future therapeutic development, recent druggability assessment data suggest that direct targeting of ATAD2's bromodomain (BRD) may be a very challenging task. ATAD2's BRD has been predicted as a 'difficult to drug' or 'least druggable' target due to the concern that its binding pocket, and the areas around it, seem to be unfeasible for ligand binding.
View Article and Find Full Text PDF