Publications by authors named "Yaoqi Guo"

Listeria monocytogenes is an important pathogen which easily contaminates food and causes fatal systemic infections in human. Bacteriocins have received much attention regarding their natural methods of controlling health-related pathogens. Here, we investigated and characterized a novel two-component bacteriocin named acidicin P from Pediococcus acidilactici LAC5-17.

View Article and Find Full Text PDF

Background: Xylan is a major component of plant cells and the most abundant hemicellulose. Xylanases degrade xylan into monomers by randomly cleaving β-1,4-glycosidic bonds in the xylan backbone, and have widespread potential applications in various industries. The purpose of our study was to clone and express the endoxylanase gene xynA of Thermobifida fusca YX in its native form and with a C-terminal histidine (His) tag in Pichia pastoris X-33.

View Article and Find Full Text PDF

Paenibacterin is a novel lipopeptide antibiotic with potent activity against Gram-negative and Gram-positive human pathogens. The antibiotic consists of a cyclic 13-residue peptide and an N-terminal C₁₅ fatty acyl chain. To elucidate the biosynthesis of paenibacterin, we determined the whole genome sequence of the producer strain Paenibacillus thiaminolyticus OSY-SE, and the function of the peptide synthetase was confirmed experimentally.

View Article and Find Full Text PDF

A strain of Paenibacillus sp., OSY-SE, was isolated from soil and found to produce a novel lipopeptide antibiotic. The antibiotic, paenibacterin, is active against Gram-negative and Gram-positive bacterial pathogens.

View Article and Find Full Text PDF

The emergence of antibiotic resistance has spurred a great number of studies for development of new antimicrobials in the past decade. The purpose of this study was to screen environmental samples for Bacillus strains producing potent antimicrobial agents. A new strain, which showed strong antimicrobial activity against Staphylococcus aureus and Salmonella enterica ser.

View Article and Find Full Text PDF

This research was initiated to search for novel antimicrobial compounds produced by food or environmental microorganisms. A new bacterial strain, designated OSY-SE, which produces a unique and potent antimicrobial agent was isolated from soil. The isolate was identified as a Paenibacillus sp.

View Article and Find Full Text PDF