Publications by authors named "Yaoliang Shen"

Acidic nitrification, as a novel process for treating wastewater without sufficient alkalinity, has received increasing attention over the years. In this study, a continuous-flow reactor with aerobic granular sludge was successful operated at low pH (<6.5) performing high-rate acidic nitrification.

View Article and Find Full Text PDF

The anaerobic ammonium oxidation (anammox) process is adversely affected by the limitation of inorganic carbon (IC). In this research, a new technique was introduced to assist anammox biomass in counteracting the adverse effects of IC limitation by incorporating waste iron scraps (WIS), a cheap and easily accessible byproduct of lathe cutting. Results demonstrated that reducing the influent IC/TN ratio from 0.

View Article and Find Full Text PDF

Objectives: The goal of this study was to investigate the clinical value of emergent triglyceride (TG)-lowering therapies for hyperlipidemic acute pancreatitis (HLAP).

Methods: 126 HLAP patients were assigned randomly to receive either conventional treatment (CT), normal saline (NS) alone, or continuous veno-venous hemofiltration (CVVH) as an intensive TG-lowering therapy. TG levels, clinical outcomes, and inflammatory biomarkers were compared among the three groups.

View Article and Find Full Text PDF

In this study, a modified continuous-flow nitrifying reactor was successfully operated for rapid cultivation of micro-granules and achieving robust nitritation. Results showed that sludge granulation with mean size of ca. 100 µm was achieved within three weeks by gradually increasing settling velocity-based selection pressure from 0.

View Article and Find Full Text PDF

As a by-product of industry, waste iron scraps (WIS) are low-cost and widely available, which was potential for the development of iron-assisted anammox. In this study, the feasibility of adding WIS to enhance the nitrogen removal of the anammox process (also called WIS-assisted anammox) was demonstrated. Results indicated that the WIS-assisted anammox reactors performed a 15-35% higher nitrogen removal efficiency than that of the control.

View Article and Find Full Text PDF

Media-supported biofilm is a powerful strategy for growth and enrichment of slow-growing microorganisms. In this study, a single-stage nitritation-anammox process treating low-strength wastewater was successfully started to investigate the biofilm development on porous polyurethane hydrogel carrier. Suspended biomass migration into the carrier and being entrapment by its internal interconnected micropores dominated the fast initial colonization stage.

View Article and Find Full Text PDF

Achieving mainstream nitritation with aerobic granules is attractive based on increasing evidence but generally treating artificial low-ammonium wastewater. Real municipal wastewater is much more complex in composition, the behavior of the nitritation granules would be different when treating real municipal wastewater. Herein, the response of nitritation granules to influent shift from artificial low-ammonium (35-40 mg/L) wastewater to anaerobically pre-treated municipal wastewater (MWW) was investigated at low temperatures.

View Article and Find Full Text PDF

Partial nitritation is necessary for the implementation of the mainstream anammox (anaerobic ammonium oxidation) process in wastewater treatment plants. However, the difficulty in outcompeting nitrite-oxidizing bacteria (NOB) at mainstream conditions hinders the performance of partial nitritation. The present work aimed to develop a high-rate partial nitritation process for low-ammonium wastewater treatment at low temperatures by seeding aerobic granules.

View Article and Find Full Text PDF

In this study, a high-rate CANON (Complete Autotrophic Nitrogen-removal Over Nitrite) process was started up successfully by enhancing the in-situ enrichment of anammox bacteria in aerobic granules at conditions relevant for mainstream wastewater treatment. Firstly, to provide nitrite for anammox bacteria growth efficient nitrite-oxidizing bacteria (NOB) repression was rapidly achieved and stably maintained. Both low dissolved oxygen (DO) and ammonium concentrations ratio (DO/NH <0.

View Article and Find Full Text PDF

Metal-free carbonaceous composite membranes have been proven to effectively drive novel in situ catalytic oxidation for the degradation of organic pollutants via persulfates activation. In this study, nitrogen-doped graphene (NG) was employed as a modifier to enhance the catalytic activity of the carbon mats by assembly with reduced graphene oxide (rGO) and carbon nanotubes (CNTs) on the top of a nylon supporter. The morphology and performance of the NG/rGO/CNTs composite membrane were compared to those obtained without the addition of NG (rGO/CNTs).

View Article and Find Full Text PDF

The performance and microbial characteristics of ammonium-limited and nitrite-limited ANAMMOX reactors were studied in two continuously stirred tank reactors. The influent TN concentrations were controlled below 50 mg·L. The hydraulic retention time and water temperature were maintained at 2.

View Article and Find Full Text PDF

Removal of bromate (BrO) has gained increasing attention in drinking water treatment process. Photocatalysis technology is an effective strategy for bromate removal. During the photocatalytic reduction of bromate process, the photo-generated electrons are reductive species toward bromate reduction and photo-generated holes responsible for water oxidation.

View Article and Find Full Text PDF

The feasibility of the denitrifying phosphorus removal process in the ABR-MBR system with no sludge reflux and high concentration of seeding activated sludge (25 g ·L, in MLSS) in the ABR was investigated. The characteristics of the microbial community in the denitrifying phosphorus removal compartment were also evaluated. The denitrifying phosphorus removal function was achieved by gradually increasing the reflux ratio () from 0% to 200%.

View Article and Find Full Text PDF

To elucidate how high dissolved oxygen (DO) favors the startup of nitritation with aerobic granular sludge, two granular reactors were operated under low (1-2 mg O·L) and high DO (3-5 mg O·L) conditions with similar effluent ammonium concentrations (>20 mg N·L). The results showed that though nitritation with an average nitrite accumulation ratio of above 95% was finally achieved in both reactors, a five-fold start-up time (eleven weeks) was required for the low DO reactor compared to the high DO reactor. Moreover, the nitritation performance was positively correlated with the extent of nitrifiers stratification in granules.

View Article and Find Full Text PDF

Objective: This study investigated whether the CYP11B2 -344T/C polymorphism is correlated with transient ischemic attack (TIA) susceptibility.

Methods: We recruited 100 TIA patients and 100 control subjects and analyzed the CYP11B2 -344T/C polymorphism using restriction fragment length polymorphism (PCR-RFLP).

Results: The frequency in TIA patients and controls was 42% compared with 48% for TT genotypes, 51% compared with 45% for TC genotypes, and 7% compared with 7% for CC genotype, respectively.

View Article and Find Full Text PDF

Anaerobic ammonium oxidation (ANAMMOX) granular sludge was cultured during different operating conditions by an expanded granular sludge bed (EGSB) reactor and up-flow anaerobic sludge bed (UASB) reactors, and the characteristics of the granular sludge and microbial community were compared. The results showed that the flocculent ANAMMOX sludge can be granulated after being operated for 384 days by the EGSB and UASB reactors. The average particle size reached 1.

View Article and Find Full Text PDF

The characteristics of organics transformation and sludge morphology of in an ABR(anaerobic baffled reactor) for sewage treatment with different HRTs were investigated based on reactor performance, particle size distribution, and scanning electron microscopy (SEM). Results showed that the COD removal rate was stably maintained above 90.0% when the HRT decreased from 15 h to 4 h.

View Article and Find Full Text PDF

The realization process of nitritation was studied in a CSTR reactor seeding with nitrification granular sludge to treat low ammonia sewage. During the operation period, the physical and chemical properties, the spatial distribution of functional microbes, and the activity of the granular sludge were also investigated to elaborate the main factors for the stability of nitritation. The results showed that nitritation can be successfully achieved and maintained by the cooperative controlling of nitrogen loading rate (NLR) and dissolved oxygen (DO) levels, and the nitrite accumulation rate was over 80%.

View Article and Find Full Text PDF

Biomass segregation between granules/biofilm and flocs is widespread in anammox-based processes. The segregation of biomass allows for easy control of processes stability. The goal of this study is to understand the biomass segregation in two anoxic anammox reactors respectively operated in nitrite-limited (R) and ammonium-limited (R) modes treating low-strength wastewater at 20 °C.

View Article and Find Full Text PDF

The rapid achievement of nitrifying micro-granular sludge and its nitritation function was studied in a continuously operated internal-loop airlift reactor seeding with floccular sludge. Results showed that the sludge micro-granulation was almost realized within three weeks by gradually reducing the hydraulic retention time from 5 h to 2.5 h.

View Article and Find Full Text PDF

This study uses three different operating phases for a sequencing batch reactor (SBR) combined with an anaerobic baffled reactor (ABR) to determine the effect of deep nitrogen and carbon removal by the "partial nitrification-anaerobic ammonium oxidation combined denitrification" (termed PN-SAD) reaction. The effluent of the SBR (NO-N/NH-N ratio range of 1-1.32) was accessed directly to the single compartment ABR anammox system in phase Ⅰ.

View Article and Find Full Text PDF

In order to apply partial nitritation-ANAMMOX (PN/A) technology to treat wastewater with high concentrations of ammonia, autotrophic nitrogen-removing granular sludge was crushed and inoculated into a three-stage continuous flow reactor. The nitrogen loading rate (NLR), dissolved oxygen (DO) concentration, and free ammonia (FA) levels in each compartment of the reactor were controlled over a 106-day period. Results showed that the nitritation process occurred with the inoculated granules during the initial phase.

View Article and Find Full Text PDF

The start-up and stable operation of single-stage autotrophic nitrogen removal process under low ammonia nitrogen substrate at room temperature appears as the premise and basis for the application in municipal wastewater treatment. In this study, the PN/A (partial nitritation and ANAMMOX) granular sludge for long-term storage was inoculated into an air-lift bioreactor to investigate the nitrogen removal performance during the start-up of single-stage partial nitritation and ANAMMOX process under the following conditions:temperature at (23±2)℃, pH at 7.7-8.

View Article and Find Full Text PDF

In this work, the effects of the sludge retention time (SRT, 35, 25, or 15 d) and pH (7.5, 8.0, 8.

View Article and Find Full Text PDF

A two-stage partial nitritation (PN)-ANAMMOX process was successfully carried out for low-strength NH-N (50 mg·L) wastewater treatment at ambient/low temperatures. The results show that an average total nitrogen removal rate and removal efficiency above 0.6 kg·(m·d)and 80% could be maintained, respectively, at temperatures between 20℃ and 14℃.

View Article and Find Full Text PDF