Auxin has emerged as a crucial regulator of plant nitrogen (N)-use efficiency (NUE) through indirect effects on plant growth and development and direct regulation of N metabolism-related genes. We previously reported DULL NITROGEN RESPONSE1 (DNR1) as an amino transferase that inhibits auxin accumulation and negatively regulates rice (Oryza sativa) NUE and grain yield. However, the identities of molecular regulators acting upstream of DNR1 await exploration.
View Article and Find Full Text PDFBetween the two major rice subspecies, indica varieties generally exhibit higher nitrate (NO) uptake and nitrogen (N)-use efficiency (NUE) than japonica varieties. Introducing efficient NO utilization alleles from indica into japonica could improve NUE, and at the same time uncover unknown regulators of NO metabolism. Here, we identify OsWRKY23 as a key regulator of NO uptake and NUE differences between indica and japonica rice.
View Article and Find Full Text PDFPlant nitrogen (N)-use efficiency (NUE) is largely determined by the ability of root to take up external N sources, whose availability and distribution in turn trigger the modification of root system architecture (RSA) for N foraging. Therefore, improving N-responsive reshaping of RSA for optimal N absorption is a major target for developing crops with high NUE. In this study, we identified RNR10 (REGULATOR OF N-RESPONSIVE RSA ON CHROMOSOME 10) as the causal gene that underlies the significantly different root developmental plasticity in response to changes in N level exhibited by the indica (Xian) and japonica (Geng) subspecies of rice.
View Article and Find Full Text PDFThe study aimed to synthesize novel zeolite substrates modified with four types of ZnAl-LDHs including Cl-LDHs(1:1), Cl-LDHs(3:1), CO-LDHs(1:1), and CO-LDHs(3:1); investigate Cr(VI) removal efficiencies in lab-scale constructed wetlands (CWs); and explore the effect of different Zn/Al ratios and intercalated anions on the removal efficiencies of Cr(VI) by modified zeolite. Different ZnAl-LDHs were prepared by co-precipitation method and coated onto the surface of original zeolite. Field emission scanning electron microscope and energy dispersive spectrometer were used to analyze physicochemical properties of zeolite/ZnAl-LDHs.
View Article and Find Full Text PDFBrain Res Bull
September 2012
Apelin, the novel identified peptide, is the endogenous ligand for the APJ. Previous studies have reported the effect of apelin on food intake, however the action of acute central injected apelin on food intake in mice remains unknown. The present study was designed to investigate the mechanism as well as the effect of central apelin-13 on food intake in mice.
View Article and Find Full Text PDFApelin, as the endogenous ligand for the APJ, regulates many biological functions, including blood pressure, neuroendocrine, drinking behavior, food intake and colonic motility. The present study was designed to investigate the effect of central apelin-13 on gastric emptying and gastrointestinal transit in mice. Intracerebroventricular (i.
View Article and Find Full Text PDF